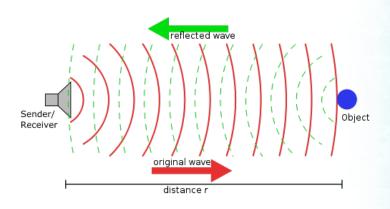

TI HealthTech

Engineering components for life.

AFE5809: Analog Front End for Ultrasonic Applications


Introduction

- Purpose
 - To introduce TI's AFE5809 for Ultrasonic Rx path
- Objective
 - To discuss AFE5809's features and benefits
- Content
 - Ultrasound vs Ultrasonic
 - Sonar applications
 - Non-destructive testing applications
 - AFE5809 Analog Front End for Ultrasonic Rx
 - Why is the AFE5809 so great?

Ultrasonic vs Ultrasound

- Ultrasonic refers to more than just Medical Ultrasound.
- It refers to any application that uses high frequency sound pulses or electromagnetic waves to measure distance, velocity, or material characteristics.
- Basic operation and electronic components are similar, but frequencies, distances, measurement environments, and total number of channels can vary greatly.

Sonar Applications


- Sonar:
 - Uses sound waves to measure or detect objects on or under the surface of the water.
 - Similar to medical ultrasound, beamforming is used and an array of receivers produces spatial differentiation.
 - Unlike medical ultrasound, lower frequency's and higher gain ranges are sometimes needed to measure very far distances.
 - Typical Sonar applications include:
 - Fish finders lower channel count, smaller size
 - Deep water survey longest distances
 - Military and Stealth applications

Non-Destructive Testing (NDT)

- NDT:
 - Refers to a wide group of analysis techniques used to evaluate the properties of a material, component or system without causing damage
 - One type of NDT test is ultrasonic testing
 - Uses ultrasonic pulse waves launched into materials to detect internal flaws or characterize materials.
 - Has higher frequency and dynamic range requirements compared to medical ultrasound.
 - Typical NDT ultrasonic applications include:
 - Thickness measurement
 - Flaw detection
 - Stud finders

Ultrasonics: Sonar / NDT

AFE5809:

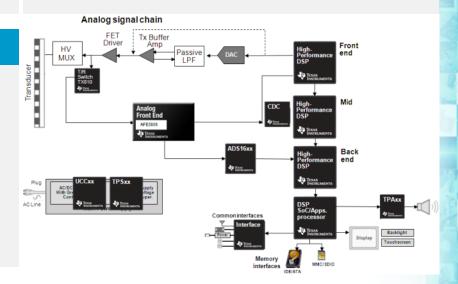
AFE with Passive CW Mixer & Digital I/Q Demod

Features

- 8 CH AFE with LNA, VCAT, PGA, LPF, ADC, CW Mixer and integrated:
 - Digital I/Q demodulator
 - Continuous wave Doppler (CWD)
- 14 bit ADC w/ 77 dBFS SNR.
- Selectable power/noise combo's to optimize system
 - 158mW/ch at **0.75nV/rtHz**, 65MSPS
 - 99mW/ch at 1.1nV/rtHz, 40MSPS
 - 80mW/ch at CW Mode
- Package: 15 mm x 9 mm, 135-BGA

Benefits

- Complete AFE for Ultrasound and Ultrasonic systems
- Lowers interface rate, cost of FPGA
- Measures blood flow velocity in Spectral Doppler systems
- Best in-class noise levels for crisp image qualities.
- Ability to fine-tune power consumption for portable systems

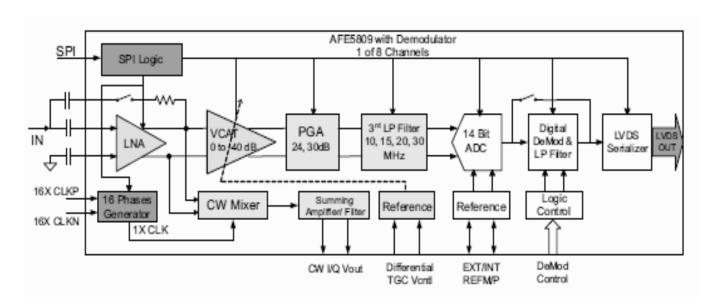

Applications

- Ultrasound Imaging
- Non-destructive Testing
- Sonar
- Military Radar

Samples: Now

EVM: Now

Production: Released!



Why is the AFE5809 so great?

What it is: Complete 8 ch front end integrating all of the components of a typical Ultrasound Receiver.

Features and Benefits:

- Complete front end solution = easier design and lowered BOM cost
- Digital I/Q demodulation = reduced FPGA processing requirements
- Lowest noise and lowest power = highest image quality at lowest power

Summary

- Complete 8 ch front end integrating all of the components of a typical reciever for ultrasonic applications such as Sonar or NDT.
- Features and Benefits include
 - Complete front end solution = easier design and lowered BOM cost
 - Digital I/Q demodulation = reduced FPGA processing requirements
 - Lowest noise and lowest power = highest image quality at lowest power
- To learn more or order samples or evaluation module please visit <u>www.ti.com/product/AFE5809</u>