
1
we get technical

We get
technical
3 uses for tinyML at
the Edge

How to build an
AI-powered toaster

Road-tested GMSL
cameras drive into
new markets

How machine
vision is advancing
automation now

Edge AI I Volume 18

2 3
we get technical

2

co
nt

en
ts

Editor’s note

Welcome to the DigiKey eMagazine Volume 18
– Edge AI.

As technology continues to evolve at a rapid pace, we’re
constantly exploring innovative solutions that shape the
future of industries from IoT to AI and machine vision. In
this issue, we’ve curated a selection of articles that offer
valuable insights into these game-changing technologies
and how they’re transforming the way we approach
engineering challenges.

In our first feature, we delve into predictive maintenance
through AI-powered data acquisition, highlighting how
current sensors can play a pivotal role in optimizing
efficiency and minimizing downtime. Staying on the topic
of AI, we also explore tinyML at the Edge – examining three
unique use cases that demonstrate how machine learning
can be deployed directly within resource-constrained
devices for smarter, more efficient systems.

For those venturing into the world of multicore
microcontrollers, we break down why they’re essential for
IoT devices at the Edge and provide practical advice on
getting started with these powerful, parallel-processing
units. We also take a deep dive into the crucial, yet often
overlooked, aspect of data preparation in machine learning
– offering clarity on why clean, structured data is the
foundation of successful ML projects.

On the hardware front, we explore how to design and
deploy smart machine vision systems rapidly, empowering
you with the tools needed to integrate visual intelligence
into applications across industries. And lastly, we turn our
focus to GMSL cameras, which have been road-tested
and are driving innovation into new markets, presenting
opportunities that are redefining how we capture and
process visual data.

This issue is packed with cutting-edge information and
practical tips to keep you ahead of the curve in the world
of technology. We hope these articles inspire fresh
ideas and new possibilities as you navigate the exciting
developments in your field.

4
Use a current sensor to efficiently
acquire data for predictive
maintenance with AI

8 3 uses for tinyML at the Edge

12
Why and how to get started with
multicore microcontrollers for IoT
devices at the Edge

18 How to build an AI-powered toaster

22
Special feature: retroelectro
Programming a calculator to form
concepts: the organizers of the
Dartmouth Summer Research Project

28 What is data-preparation in ML, and
why is it crucial for success?

30 How to rapidly design and deploy
smart machine vision systems

36 Road-tested GMSL cameras drive
into new markets

40 Understanding computer and
machine vision

50 How machine vision is
advancing automation now

4 5
we get technical

The Internet of Things (IoT) has
brought about tremendous interest
in using artificial intelligence
(AI) and machine learning (ML)
technologies to monitor the health
of machines including motors,
generators, and pumps, and to alert
maintenance engineers as to any
looming problems. One difficulty
for the designers of AI/ML systems
looking to implement this type of
predictive maintenance is selecting
the best sensor for the application.
Another issue is that relatively few
designers have any experience
creating AI/ML applications.

To obtain the data for the AI/ML
system to act upon, designers often
opt for sophisticated sensors like
three-axis accelerometers coupled
with high-powered microcontroller
development platforms. In many
cases, however, it’s possible to
achieve the desired goal using
a simple current sensor in
conjunction with a more modest
and less costly microcontroller
development platform.

This article introduces the idea of
using a current sense transformer
to obtain the data required to
simply and cost-effectively
implement AI/ML applications.
Using a low-cost Arduino IoT
microcontroller development
platform and a current sense
transformer from CR Magnetics,
the article also presents a simple
circuit that employs the current
sensor to monitor the health of a
vacuum pump with an integrated
filter, alerting the user when the
filter has become clogged. Finally,
the article presents an overview
of the process of creating the
associated AI/ML application.

Simple sensors for AI/ML

In order to acquire the data for
an AI/ML application to act
upon, designers often opt for
sophisticated sensors like three-
axis accelerometers; but this
type of sensor can generate vast
amounts of data that are difficult
to manipulate and understand. To

Use a current sensor to
efficiently acquire data for
predictive maintenance
with AI Written by Clive ‘Max’ Maxfield

or greater current values). All
members of the family support a
frequency range of 20 hertz (Hz)
to 1 kilohertz (kHz), covering the
majority of industrial applications.
Also, all CR31xx devices employ
a hinge and locking snap that
allows them to be attached without
interrupting the current carrying
wire.

The Arduino Nano 33 IoT

One example of a low-cost
microcontroller development
platform suitable for prototyping
simple AI/ML applications is the
ABX00032 Arduino Nano 33 IoT
from Arduino (Figure 2). Featuring
an Arm Cortex-M0+ 32-bit
ATSAMD21G18A processor running
at 48 megahertz (MHz) with 256
kilobytes (Kbytes) of flash memory
and 32 Kbytes of SRAM, the

Arduino Nano 33 IoT also comes
equipped with both Wi-Fi and
Bluetooth connectivity.

Data capture circuit

The circuit used for the purpose
of this discussion is shown below
in Figure 3. The CR3111-3000
transforms the measured current
driving the machine into a much
smaller one using a 1000:1 ratio.

Resistor R3, which is connected
across the CR3111-3000’s
secondary (output) coil, acts as
a burden resistor, producing an
output voltage proportional to the
resistor value, based on the amount
of current flowing through it.

Resistors R1 and R2 act as a
voltage divider, forming a ‘virtual
ground’ with a value of 1.65 volts.
This allows the values from the
CR111-3000 to swing positive and
negative and still not hit a rail, since
the microcontroller cannot accept
negative voltages. Capacitor C1
forms part of an RC noise filter that
reduces noise from the 3.3 volt

supply and nearby stray fields from
getting into the measurements,
thereby helping the voltage divider
act as a better ground.

A vacuum pump with an integrated
filter was used to provide a
demonstration test bench. For
the purposes of this prototype,
Tripp Lite’s P006-001 1 foot (ft.)
extension power cord was inserted
between the power supply and the
vacuum pump (Figure 4).

The prototype circuit was

Figure 2: The Arduino ABX00032 Nano
33 IoT provides a low-cost platform
upon which to build AI/ML applications
to enhance existing devices (and create
new ones) to be part of the IoT. Image
source: Arduino

Figure 3: The circuit used to convert the output
from the CR3111-3000 into a form that can be used
by the Arduino Nano 33 IoT with its 3.3 volt inputs.
Image source: Max Maxfield

Figure 1: The CR3111-3000 split-core
current sense transformer provides
a low-cost, easy-to-use current
detector that can be employed as the
primary sensor in an AI/ML predictive
maintenance application. Image source:
CR Magnetics

4

avoid this complexity, it’s worth
remembering that everything is
interrelated. Just as an injury to one
part of a person’s body can cause
referred pain that is perceived
elsewhere in the body, a failing
bearing in a motor can modify the
current being used to drive that
motor. Similarly, in addition to
causing overheating, a blocked air
intake can also modify the current
being used to drive the motor.

Consequently, monitoring one
aspect of a machine’s operation
may cast light on other facets of its
workings. As a result, it’s possible
to achieve the desired monitoring
and sensing goal by observing
a related parameter using a
substantially simpler sensor, such
as the low-cost, small-size, CR3111-
3000 split-core current sense
transformer from CR Magnetics
(Figure 1).

The CR3111-3000 can be used to
detect current up to 100 amperes
(A) (other members of the CR31xx
family can be employed for lessor

https://www.digikey.co.uk/en/supplier-centers/arduino
https://www.digikey.co.uk/en/supplier-centers/cr-magnetics
https://www.digikey.co.uk/en/products/detail/arduino/ABX00032/1050-ABX00032-ND/10239967
https://www.digikey.co.uk/en/supplier-centers/arm
https://www.digikey.co.uk/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcoLQdIDGUBmBDANgZwKYBoQB7KAbXAFYAGEAXQF8CYAmKUZSAFwCcBXfI0iACctOgxAtIZAIIAVAMrSAsgBEmYAOJgAHNNFA
https://www.digikey.co.uk/en/supplier-centers/tripp-lite
https://www.digikey.co.uk/en/products/detail/cr-magnetics-inc/CR3111-3000/582-1178-ND/4383872
https://www.digikey.co.uk/en/products/detail/cr-magnetics-inc/CR3111-3000/582-1178-ND/4383872

6 7
we get technical

implemented using components
from the author’s treasure chest
of spare parts (Figure 5). Readily
available equivalents would be as
follows:

	■ Adafruit 64 breadboard
	■ Twin Industries TW-E012-000

pre-formed wire kit for use with
breadboards

	■ Stackpole Electronics
RNMF14FTC150R 150 ohm (Ω)
±1% 0.25 watt (W) through-hole
resistor

	■ Stackpole Electronics’
RNF14FTD10K0 10 kiloohm (kΩ)
±1% 0.25 W through-hole resistor

	■ KEMET ESK106M063AC3FA
10 microfarad (µF) 63 volt
aluminum electrolytic capacitor

With regard to the leads from the
current sensor, 1931 22-28 AWG
crimp pins from Pololu Corp. were
crimped on the ends. These pins
were subsequently inserted into
a 1904 5 x 1 black rectangular
housing with a 0.1 inch (in.) (2.54
millimeter (mm)) pitch, also from
Pololu.

Creating the AI/ML
application

In order to create the AI/ML
application, a free trial version of
NanoEdge AI Studio was accessed
from Cartesium’s website (see also,
‘Easily Bring Artificial Intelligence to
Any Industrial System’).

When NanoEdge AI Studio is
launched, the user is invited to
create and name a new project.
The user is then queried as to the

the beginning and end of the run),
and then loaded into NanoEdge AI
Studio.

The good data was collected with
the vacuum pump running in its
normal mode. In order to gather the
bad data, the pump’s air filter was
obstructed with a disk of paper.

Using the good and bad data,
NanoEdge AI Studio generates the
best AI/ML library solution out of
500 million possible combinations.
Its ongoing progress is displayed
in a variety of different ways,
including a scatter chart showing
how well the normal signals (blue)
are being distinguished from the
abnormal signals (red) with regard
to a threshold value, which was set
to 90% in this example (Figure 7).

The early models typically find it
difficult to distinguish
between the normal
and abnormal data,

Use a current sensor to efficiently acquire data for predictive maintenance with AI

but the system evaluates different
combinations of algorithmic
elements, iterating on increasingly
accurate solutions. In this case, the
process was halted after 58,252
libraries had been evaluated. The
resulting library (model) was only 2
Kbytes in size.

It’s important to note that, at this
stage, the model is in its untrained
form. Many different factors
may affect the ways in which the
machines run. For example, two
seemingly identical vacuum pumps
could be mounted in different
locations – for example, one on
a concrete slab and the other on
a suspended floor. Or one of the
machines could be located in a
hot, humid environment, while
the other may be in a cold, dry
setting. Furthermore, one could
be connected to long lengths of
metal pipe, while the other could be
attached to short lengths of plastic
pipe.

Thus, the next step is to incorporate
the library into the applications
running on the microcontrollers
and sensors that are attached to
machines that are deployed in the

real world. The AI/ML models on
the different machines will then
train themselves using good data
from these real-world installations.
Following this self-training period,
the AI/ML models can be left to
monitor the health of the machines,
looking for anomalies and trends,
and reporting their findings and
predictions to human supervisors.

Conclusion

Predictive maintenance using AI/
ML allows engineers to address
problems before failures actually

occur. However, the hardware
used to implement the predictive
maintenance system needs to
be as simple and cost-effective
as possible; also, designers need
ready access to the required
software to perform the analysis.

As shown, instead of opting for a
complex multi-axis accelerometer
and associated hardware, a
simple, low-cost, small-size,
CR3111-3000 split-core current
transformer connected to a low-
cost microcontroller platform
can perform the required sensing
and data gathering. Coupled
with advances in AI/ML tools
and algorithms, it’s now possible
for non-AI/ML experts to create
sophisticated AI/ML models that
can be deployed in a wide range

of simple and complex
sensing applications.

Figure 4: The
1-foot extension
power cord that
was modified
to accept the
current sensor.
Image source:
Max Maxfield

Figure 6: Comparison of good/normal data (top)
and bad/abnormal data (bottom). Apart from the
differences in color, these don’t seem terribly
different to the human eye, but an appropriate AI/ML
model can distinguish between them. Image source:
Max Maxfield

Figure 5: The prototype
circuit was implemented
using a small breadboard
and components from
the author’s treasure
chest of spare parts.
Image source: Max
Maxfield

Figure 7: NanoEdge AI
Studio evaluates up to 500
million different AI/ML
models to determine the
optimal configuration for the
normal and abnormal data.
The initial models are rarely
successful (top), but the tool
automatically iterates on
better and better solutions
until the developer decides
to call a halt (bottom).
Image source: Max Maxfield

processor being used (an Arm
Cortex-M0+ in the case of the
Arduino Nano 33 IoT development
board), the type(s) of sensor being
used (a current sensor in this
case), and the maximum amount
of memory that is to be devoted to
this AI/ML model (6 Kbytes was
selected for this demonstration).

In order to create the AI/ML model,
it is first necessary to capture
representative samples of good
and bad data (Figure 6). A simple
Arduino sketch (program) was
created to read values from the
current sensor. This data can be
directly loaded into NanoEdge
AI Studio ‘on-the-fly’ from the
microcontroller’s USB port.
Alternatively, the data can be
captured into a text file, edited
(to remove spurious samples at

https://www.digikey.co.uk/en/supplier-centers/adafruit
https://www.digikey.co.uk/en/products/detail/adafruit-industries-llc/64/1528-2182-ND/7241427
https://www.digikey.co.uk/en/supplier-centers/twin-industries
https://www.digikey.co.uk/en/products/detail/twin-industries/TW-E012-000/438-1049-ND/643115
https://www.digikey.co.uk/en/supplier-centers/stackpole-electronics
https://www.digikey.co.uk/en/products/detail/stackpole-electronics-inc/RNMF14FTC150R/S150CACT-ND/2617812
https://www.digikey.co.uk/en/products/detail/stackpole-electronics-inc/RNF14FTD10K0/RNF14FTD10K0CT-ND/1975090
https://www.digikey.co.uk/en/supplier-centers/kemet
https://www.digikey.co.uk/en/products/detail/kemet/ESK106M063AC3FA/399-18269-1-ND/9448287
https://www.digikey.co.uk/en/products/detail/pololu-corporation/1931/2183-1931-ND/10450365
https://www.digikey.co.uk/en/supplier-centers/pololu
https://www.digikey.co.uk/en/products/detail/pololu-corporation/1904/10450381
https://cartesiam.ai/download/
https://www.digikey.co.uk/en/blog/release-the-kraken-easily-bring-artificial-intelligence-to-any-industrial-system
https://www.digikey.co.uk/en/blog/release-the-kraken-easily-bring-artificial-intelligence-to-any-industrial-system

8 9
we get technical

Written by Jacob Beningo

3 uses for tinyML at
the Edge

Machine learning (ML) has found
its way into many areas of the
Cloud and has been finding its
way to the Edge on relatively
powerful processors running
Linux. The problem with traditional
ML running on these systems is
that their power profiles are too
large for them to ‘disconnect’ and
perform work as battery-operated
Edge devices. The trend, and the
future of ML at the Edge, is to use
tinyML. TinyML aims to bring ML
algorithms to resource-constrained
devices, such as microcontrollers
based on Arm Cortex-M
processors.

In this blog, we will explore
the most popular use cases
for leveraging tinyML on
microcontroller-based devices for
use at the Edge.

Use case #1: keyword
spotting

The first use case that tinyML is
becoming popular for is keyword
spotting. Keyword spotting is the
ability of a device to recognize
a keyword like ‘Hey Siri’, ‘Alexa’,
‘Hello’, and so forth. Keyword
spotting has many uses for edge
devices. For example, one might
want to use a low-power processor
to watch for a keyword that will
wake up a more powerful one.
Another use case might be to
control an embedded system or a
robot. I’ve seen examples where a
microcontroller was used to decode
keywords like ‘forward’, ‘backward’,
‘stop’, ‘right’, and ‘left’ to control a
robot’s movement.

Keyword spotting with tinyML

Figure 1: An input speech signal is digitally processed to create a spectrograph used
to train an NN to detect keywords. Image source: Arm

I’ve seen examples where a microcontroller
was used to decode keywords like ‘forward’,
‘backward’, ‘stop’, ‘right’, and ‘left’ to control a
robot’s movement.

https://www.digikey.co.uk/en/supplier-centers/arm

10 11
we get technical

is typically done by using a
microphone to capture an input
speech signal. The speech signal is
recorded as a voltage over time and
then converted into a spectrograph
using digital signal processing. The
spectrograph is a time series that
is plotted against the frequency of
the input signal. The spectrograph
can be fed into a neural network
(NN) to train the tinyML algorithm
to recognize specific words. The
process is shown in Figure 1.

A typical implementation would
feed fixed windows of speech into
the NN. The network would then
evaluate the probability of one of
the desired keywords having been
spoken. For example, if someone

said, ‘Yes’, the NN may report that it
was 91% sure it was ‘Yes’, with a 2%
chance it’s ‘No’, and a 1% chance
it’s ‘On’.

The ability to use speech to
control machines is
a use case that many
device manufacturers
are carefully reviewing
and hoping to enhance
their devices within the
coming years.

Use case #2: image
recognition

The second use case that tinyML
is finding its way into is image
recognition. There are quite a
few use cases for Edge devices

that can perform image
recognition. One use
case that you might
already be familiar
with is the ability to
detect whether there
is a person, package,

or nothing at your door. There
are certainly plenty of other
applications that range from
monitoring old analog meters,
detecting lawn health, or even bird
counting.

Image recognition can seem like
a complex field in which to get
involved. However, there are several
low-cost platforms available that
can help developers get up and
running. One of my favorites, and
one that I use to get things done
quickly, is the OpenMV.

OpenMV is an open machine vision
platform that includes an integrated
development environment (IDE), a
library framework written in Python,
and a camera module from Seeed
Technology that helps developers
create their machine vision
applications (Figure 2).

The camera module is based on
an STMicroelectronics STM32H7
Cortex-M7 processor. The hardware
can be expanded through its
onboard expansion headers. It can

3 uses for tinyML at the Edge

run off a battery and can even have
the camera module swapped out. A
good getting-started example that
you may find interesting is how to
use the CIFAR-10 dataset with the
Arm CMSIS-NN library for image
recognition. The example can be
found on YouTube.

Use case #3: predictive
maintenance

The last use case that we will
discuss for tinyML is predictive
maintenance. Predictive
maintenance uses tools such
as statistical analysis and ML to
predict equipment state based on:

	■ Abnormality detection
	■ Classification algorithms
	■ Predictive models

For example, a factory might have a
series of motors, fans, and robotic
equipment that are used to produce
a product. A company would want
to minimize downtime to maximize
the number of products that it can
produce. If the equipment has
sensors that can be interpreted
using ML and the other techniques
mentioned above, they can detect
when the equipment is close to
failure. Such a setup might look
something like that shown in Figure
3.

Connecting a smart sensor to
a low-power microcontroller
leveraging tinyML can result in a
wide variety of useful applications.
For example, HVAC units could
be monitored, air filters checked,
and irregular motor vibration could

be detected, among many others.
Preventive maintenance can
become more organized, hopefully
saving a company from costly
reactive measures, ensuring a more
optimized maintenance schedule.

Conclusion

TinyML has so many potential
applications and use cases at
the Edge. We’ve explored what’s
popular now, but the use cases
are nearly unlimited. TinyML can
be used for gesture detection,
guidance and control, and so much
more. As Edge devices start to
leverage the capabilities of tinyML,
the question really becomes, what
are you using tinyML for at the
Edge?

Figure 3: The third popular use case for tinyML
is smart sensors that are used for predictive
maintenance. Image source: STMicroelectronics

Figure 2: The OpenMV camera module can be used for image recognition, and
development can be done with a simple IDE using Python. Image source: Beningo
Embedded Group

https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/102991322/11506484
https://www.digikey.co.uk/en/supplier-centers/seeed
https://www.digikey.co.uk/en/supplier-centers/seeed
https://www.digikey.co.uk/en/supplier-centers/stmicroelectronics
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H750VBT6TR/12337614
https://www.youtube.com/watch?v=PdWi_fvY9Og

12 13
we get technical

Why and how to get started with
multicore microcontrollers for IoT
devices at the Edge Written by Jacob Beningo

Developers of Internet of Things
(IoT) devices at the Edge are
being asked to incorporate
an increasingly diverse and
processing-intensive range of
functions, from communications
and sampling sensors to executing
machine learning (ML) inferences.
At the same time, developers
are being asked to maintain or
reduce power consumption.
What’s needed is a more flexible
architectural approach to a core

element of their design – the
microcontroller – that will allow
developers to add features while
achieving the optimal balance of
performance, functionality, and
power consumption.

This architectural approach
comes in the form of multicore
microcontrollers. These have, as
their name suggests, multiple
processing cores built into a single
package. However, just throwing
more cores at the problem won’t

solve the issues. Developers need
to understand the differences
between symmetric and
asymmetric multicore processors,
how to approach functional
partitioning, and how to program
them effectively.

This article will introduce
the concept of multicore
microcontrollers before discussing
how developers can leverage
multicore microcontrollers
to balance performance and

14 15
we get technical

14

Figure 1: One paradigm for application design with multicore microcontrollers is
to place the feature rich application components in one core and the real-time
components in the second core. Image source: STMicroelectronics

Figure 3: The STM32H745I-DISCO board
integrates a wide range of on-board
sensors and memory capabilities that
allow developers to test out the dual
core microcontrollers running at 480
MHz and 240 MHz. Image source:
STMicroelectronics

Figure 2: Another paradigm for application design with multicore microcontrollers
is to place the real-time application components in one core and all the security
components in a second core. Image source: STMicroelectronics

playback. The second core, on the
other hand, may do nothing more
than act as a security processor.
As such, the second core would
handle storage of critical data like
device and network keys, handle
encryption, secure bootloader, and
any other features deemed to fall
within the secure software category
(Figure 2).

There are other potential
ways to parse up a multicore
microcontrollers’ application space,
but these two paradigms seem to
be the most popular among IoT
developers.

Selecting a multicore
microcontroller
development board

While multicore microcontrollers
are becoming very popular, they
are still not quite mainstream and
selecting one can be tricky. For
a developer looking to work with

multicore microcontrollers, it’s best
to select a development board that
has the following characteristics:

	■ Includes an LCD for feature rich
application exploration

	■ Expansion I/O
	■ Is low cost
	■ Has a well proven ecosystem

behind it including example code,
community forums, and access
to knowledgeable FAEs

Let’s look at several examples
from STMicroelectronics, starting
with the STM32H745I-DISCO
(Figure 3). This board is based on
the STM32H745ZIT6 dual core
microcontroller that comprises an
Arm Cortex-M7 core running at 480
megahertz (MHz) and a second
Arm Cortex-M4 processor running
at 240 MHz. The part includes a
double-precision floating point unit
and an L1 cache with 16 kilobytes
(Kbytes) of data and 16 Kbytes of
instruction cache. The discovery
board is particularly interesting
because it includes additional
capabilities such as:

	■ An SAI audio codec
	■ A microelectromechanical

systems (MEMS) microphone
	■ On-board QUAD SPI flash
	■ 4 gigabyte (Gbyte) eMMC
	■ Daughterboard

expansion
	■ Ethernet
	■ Headers for audio

and headphones

The development board
has a lot of built-in
capabilities that make
it extremely easy to

start experimenting with multicore
microcontrollers and really scale up
an application.

For developers who are looking
for a development board that has
additional capabilities and far more
expansion I/O, the STM32H757I-
EVAL may be a better fit (Figure 4).
The STM32H757I-EVAL includes
additional capabilities over the
evaluation board such as:

	■ 8 M x 32-bit SRAM
	■ 1 Gbit twin quad SPI NOR flash
	■ Embedded trace macrocell

(ETM) for instruction tracing
	■ Potentiometer
	■ LEDs
	■ Buttons (tamper, joystick, wake-

up)

These extra capabilities, especially
the I/O expansion, can be extremely
useful to developers looking to get
started.

Having looked at several
development boards, the
next step is to outline some
recommendations for getting
started with a multicore
microcontroller application.

energy constraints. Several
multicore microcontrollers from
STMicroelectronics’ STM32H7
line will be introduced by way
of example. The article will also
examine several use cases where
developers can leverage multicore
processing and split the workload
between multiple cores.

Introduction to multicore
microcontrollers

As mentioned, multicore
microcontrollers have more than
one processing core. There are

two types of configurations which
are often used, symmetric and
asymmetric processing. Symmetric
core configurations contain
two or more of the exact same
processing cores. For example,
they might both be Arm Cortex-M4
processors. Asymmetric cores on
the other hand may contain an Arm
Cortex-M7 processor and an Arm
Cortex-M4 processor. They could
also contain an Arm Cortex-M4 and
an Arm Cortex-M0+ processor. The
combinations are many and depend
upon application and design
requirements.

IoT developers are interested in
multicore microcontrollers because
they allow them to separate their
application into multiple execution
domains. Separate execution
domains allow precise control of
the application’s performance,
features, and power needs. For
example, one core may be used to
interact with a user through a high-
resolution display and touch panel,
while the second core is used
manage the real-time requirements
of the system such as controlling
a motor, relays and sampling
sensors.

There are many ways that a
developer can partition their
application, but the two biggest
paradigms are to separate the
application into:

	■ Feature rich/real-time
	■ Real-time/secure

In the first paradigm, feature rich/
real-time, the system is exactly like
the one described in the paragraph
above. Feature rich application
components, such as the display,
ML inferences, audio playback, and
memory storage, among others,
are all handled by one core. The
second core then handles real-time
functions such as motor control,
sensing, and communication
stacks (Figure 1).

The second paradigm separates
the application into real-time and
secure functionality. In the first
core, the application may handle
things like the display, memory
access, and real-time audio

Figure 4: The
STM32H757I-EVAL
board provides
developers with lots of
expansion space, easy
access to peripherals,
and an LCD screen
to get started with
multicore applications.
Image source:
STMicroelectronics

Why and how to get started with multicore microcontrollers for IoT devices at the Edge

https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H745I-DISCO/10244391?s=N4IgTCBcDaIMoBUCyBmMAJA7AFgKwEkBaAEXzgGEB5EAXQF8g
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H745ZIT6/10244385
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H757I-EVAL/10244390?s=N4IgTCBcDaIAQGUAqBZAzGAEgdgKzYEkBaAUQDUBBAGRAF0BfIA
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H757I-EVAL/10244390?s=N4IgTCBcDaIAQGUAqBZAzGAEgdgKzYEkBaAUQDUBBAGRAF0BfIA
https://www.digikey.co.uk/en/supplier-centers/stmicroelectronics
https://www.digikey.co.uk/en/supplier-centers/arm

16 17
we get technical

Why and how to get started with multicore microcontrollers for IoT devices at the Edge

How to start that first
multicore application

No matter which of the two
STM32H7 development boards is
selected, there are two main tools
that are needed to get started.
The first is STMicroelectronics’
STM32CubeIDE, a free integrated
development environment (IDE)
that lets developers compile
their application code and deploy
it to the development board.
STM32CubeIDE also provides
the resources necessary to step
through and debug an application,
and is available for major operating
systems including Windows, Linux
and MacOS.

The second tool is
STMicroelectronics’ STM32H7
firmware package. This includes
examples for the STM32H7
development boards for:

	■ Multicore processing
	■ Using FreeRTOS
	■ Peripheral drivers
	■ FatFS (file system)

Developers will want to download
the firmware application package
and become familiar with the
examples that are supported by
the chosen development board.

Specifically, there are two folders
that developers will want to
pay attention to. The first is the
applications folder which has
two examples that show how to
use OpenAMP (Figure 5). These
examples show how to transmit
data back and forth between the
microcontroller cores where one
core sends data to the other core,
which then retransmits it back
to the first core. Both examples
perform this in a different way. One
is baremetal, without an operating
system, while the other is with
FreeRTOS.

The second set of examples
demonstrates how to configure
both cores with and without an
RTOS (Figure 6). One example
shows how to run FreeRTOS on
each core, while the other shows
how to use an RTOS on one core
and run the second core baremetal.
There are several other examples

throughout the firmware package
that demonstrate other capabilities,
but these are good choices to get
started.

Loading an example project will
result in a developer seeing a
project layout similar to that shown
in Figure 7. As illustrated, the
project is broken up into application
code for each core. The build
configuration can also be setup
such that a developer is working
with only one core at a time. This
can be seen in Figure 7, through the
grayed-out files.

A full description of the example
code is beyond the scope of
this article, but the reader can
examine the readme.txt file
that is associated with any of
the examples to get a detailed
description of how it works, and
then examine the source code
to see how the inter-processor
communication (IPC) is actually
performed.

Tips and tricks for
working with multicore
microcontrollers

Getting started with multicore
microcontrollers is not difficult, but
it does require that developers start
to think about their application’s
design a bit differently. Here
are a few ‘tips and tricks’ for
getting started with multicore
microcontrollers:

	■ Carefully evaluate the application
to determine which application
domain separation makes the
most sense. It is possible to mix
domains on a single processor,
but performance can be affected
if not done carefully

	■ Take the time to explore the
capabilities that are built into
the OpenAMP framework and

how those capabilities can be
leveraged by the application

	■ Download the application
examples for the STM32H7
processors and run the multicore
application examples for the
selected development board.
The H747 includes two: one for
FreeRTOS and one for OpenAMP

	■ When debugging an application,
don’t forget that there are now
two cores running! Make sure
to select the correct thread
within the debug environment to
examine its call history

	■ Leverage internal hardware
resources, such as a hardware
semaphore, to synchronize
application execution on the
cores

	■ Developers that start with a
well-supported development

For developers of IoT systems at the network
Edge, multicore microcontrollers provide
the ability to better match and balance
functionality, performance, and power
consumption.

 Figure 5: The STM32Cube_FW_H7 provides several examples that demonstrate how
to get started with multicore processing using OpenAMP. Image source: Beningo
Embedded Group

Figure 6: The STM32Cube_FW_H7
provides several examples that
demonstrate how to configure an
operating system with multicore
processors. Image source: Beningo
Embedded Group

board and then follow these
‘tips and tricks’ will find that they
save quite a bit of time and grief
when working with multicore
microcontrollers for the first
time.

Conclusion

For developers of IoT systems
at the network Edge, multicore
microcontrollers provide the
ability to better match and balance
functionality, performance, and
power consumption per the
application’s requirements. Such
microcontrollers allow a developer
to partition their application into
domains such as feature rich/
real-time or real-time/secure
processing. This ability to separate
an application into different
domains allows a developer to
disable a core to conserve energy
when the processing domain is
no longer needed or turn it on
in order to enhance application
performance.

As shown, there are several
different development boards that
can be used to start exploring
multicore microcontroller
application design and take full
control over its performance and
energy profile.

Figure 7: An example OpenAMP
Ping-Pong project demonstrates
to developers how to create a
communication channel between
the two CPU cores. Image source:
Beningo Embedded Group

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/embedded-software/stm32cubeh7.html

18 19
we get technical

Written by Shawn Hymel.
License: Attribution Arduino

How to build an
AI-powered toaster
We can treat the toasting process
like a predictive maintenance
problem: how do we stop the
toasting before the bread in
question becomes irrevocably
damaged (i.e. burnt)? We’ll use a
variety of gas sensors and machine
learning to accomplish this task.

Required hardware

You will need the following
components:

	■ Wio Terminal
	■ Grove Multichannel Gas Sensor

v2

nodes. In the photo below, the black
wire goes to ground, the green
wire goes to the high side of the
limiting resistor for the ‘toasting’
LED (i.e. 5V during ‘toasting’ and
0V otherwise), and the yellow wire
goes to the ‘cancel’ button node
opposite GND.

Attach all of the sensors and fan
to the mounting plate. You’ll want
to position the fan to steadily blow
air over the sensors. Use the I2C
hub to connect all of the sensors
together, and use the long Grove
cable to connect the hub to the
Wio Terminal. You’ll also want long
wires to run from the Wio Terminal
to the ammonia sensor (as it is an
analog sensor, not I2C).

You need the MOSFET in open-
drain configuration to successfully
control the ‘cancel’ button. The
Wio Terminal might support open-
drain GPIO, but I was too lazy to dig
through the SAMD51 datasheet to
figure out how to do this in code.
The voltage divider is needed to
convert the 5V ‘toasting’ node to

	■ Grove SPG VOC and eCO2 gas
sensor

	■ Grove BME680 temperature,
pressure, and humidity sensor

	■ Grove I2C Hub (6 port)
	■ Grove cable (100 cm)
	■ Ammonia gas sensor
	■ Pololu Carrier for MQ Gas

Sensors
	■ Fan (40 mm, 5V)
	■ 2x 10kΩ resistors
	■ N-channel MOSFET
	■ Mounting plate (e.g. a small

piece of aluminum)
	■ Various wire, screws, nuts,

standoffs

Hardware connections

First, we need to hack the toaster.
Open the toaster and find the circuit
board that controls the toasting
process. Use a multimeter to
identify the following 3 nodes:

	■ Ground (GND)
	■ Node that becomes 3.3 or 5 V

during the toasting process (for
example, an LED that turns on
when you press the lever down)

	■ Node that connects to GND when
the ‘cancel’ button is pressed

Tack-solder 3 wires to each of these

2.5 V (still considered logic HIGH
for 3.3V pins).

Screw/bolt everything to the
aluminum plate (or some other
mounting device).

Mechanical build

Construct a cage or arm that
suspends the collection of
sensors above the toaster. The
microcontroller (Wio Terminal)
should not be placed with the
sensors to avoid letting it get too
hot.

Data collection

The model I created worked in
my environment. It may or may
not work for you, which means
you’ll likely need to collect data in
your environment. Head to github.
com/ShawnHymel/perfect-toast-
machine to view all of the code for
this project. Upload toast-odor-
data-collection to the Wio Terminal.
Read the comments in the code to
determine which libraries you need
to install prior to running the code.

Make sure the Wio Terminal is
plugged into a computer for
the data collection process. I
recommend waiting 15-30 minutes
to let the gas sensors warm up.
Use Python (v3+) to run serial-data-
collect-csv.py to have it listen for
serial data from the Wio Terminal.
This will log each toasting instance
to a CSV file on your computer. See
this readme to learn how to use
serial-data-collect-csv.py.

Start the toasting process with
a piece of bread. Press button C
(on the top of the Wio Terminal) to
tag the data in one of three states:
background (not toasting), toasting,

IMPORTANT: the SAMD51 GPIO
pins are NOT 5V tolerant! Make sure
you use a divider, diode, etc. to drop
the voltage if you’re trying to sense
something from 5V logic.

https://www.digikey.co.uk/en/maker/search-results?f=1359825874&f=1532433819
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/102991299/11689373
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020820/14317045
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020820/14317045
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020512/9489253
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020512/9489253
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020513/9369933
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020513/9369933
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/103020272/11201130
https://www.digikey.co.uk/en/products/detail/m5stack-technology-co-ltd/A034-D/16370080
https://www.digikey.co.uk/en/products/detail/sparkfun-electronics/SEN-17053/13252162
https://www.pololu.com/product/1479
https://www.pololu.com/product/1479
https://www.digikey.co.uk/en/products/detail/cui-devices/CFM-4010V-070-273/7620535
https://github.com/ShawnHymel/perfect-toast-machine
https://github.com/ShawnHymel/perfect-toast-machine
https://github.com/ShawnHymel/perfect-toast-machine
https://github.com/edgeimpulse/example-data-collection-csv

20 21
we get technical

How to build an AI-powered toaster

or burnt. Use your senses (sight,
smell) to determine when you think
the toast is ‘burnt’.

See the CSV files in the datasets/
directory to see how I labeled the
raw data. You’re welcome to use
that data as a starting point (I
just can’t promise that it will give
you a model that works in your
environment). Each folder is the
brand, and a description of the
bread used. The prefix of each CSV
file is where I pulled the bread from
(e.g. room temperature, refrigerator,
freezer).

Data curation

Run this notebook in Google Colab,
following all of the directions:
github.com/ShawnHymel/perfect-
toast-machine/blob/main/ptm_
dataset_curation.ipynb

Note that the script will
automatically download the dataset
from the GitHub directory. You
can skip those cells and manually
upload your data to the dataset/
folder in Colab if you wish to use
your own data.

At the end of Step 2, you can view
plots of your captured raw gas
samples (one at a time). Blue is
‘background’, green is ‘toasting’,
and red is ‘burnt’.

At the end of Step 3, you should
see means, standard deviations,
minimums, and ranges printed out.
Copy those down – you’ll need the
means and standard deviations for
your inference code.

Step 4 will produce an out.zip file
containing your curated dataset.
Download this file and unzip it.

Machine learning model
training

Clone this Edge Impulse project
as a starting point: studio.
edgeimpulse.com/public/129477/
latest

If you wish to use your own data,
delete all of the data in the project
and upload the data from the
unzipped out.zip file. Note that you
should upload files in the training/
directory to training in Edge
Impulse and upload files in testing/
to testing.

Go to Raw data. Click Save
parameters and then Generate
features.

When that’s done, go to Regression.
Feel free to modify the model, if
you’d like. Click Start training and
wait for training to finish.

Go to Model testing and click
Classify all. When that’s done,
you should see some estimates.
Expected outcome is the ground-
truth label that expresses the
number of seconds until the toast is
burned, which is calculated based
on when the state label transitioned
from ‘toasting’ to ‘burnt’ (0 being
the moment we believe the toast
went from ‘toast’ to ‘burnt toast’).
The result is the output of our
model, given the test input data. For
the most part, the model is capable
of predicting ‘time till burnt’ within
a few seconds. Interestingly, the
model seems to be more accurate
the closer to 0.

Deployment

Go to the Deployment page,
select Arduino library, and click
Build. When the library has been
downloaded (do not unzip it!) open
the Arduino IDE, click Sketch >
Include Library > Add .ZIP Library
… select the Arduino library that
you just downloaded from Edge
Impulse. Note the name of the
library! If it is different than ei-
perfect-toast-machine-arduino-
x.x.x.zip, you will need to change
the .h include file name in your
inference code.

Copy the perfect-toast-machine
Arduino code found here to a
new Arduino project. Read the
comments at the beginning to
see which libraries you need to
install. Rename perfect-toast-
machine_inferencing.h if you used
a different project name in Edge
Impulse. Upload the code to your
Wio Terminal.

Copy the means and standard
deviations from the Colab script
to the means and std_devs arrays,
respectively.

The first time you try the project,
pay attention to the number
displayed on the Wio Terminal. This
shows the number of predicted
seconds until the toast is burned. If
your toast comes out to light, lower
the CANCEL_THRESHOLD in the
code (i.e. wait until it is closer to
being burned before popping the
toast up). If the toast is too dark,
increase the CANCEL_THRESHOLD
(i.e. stop the toasting process
sooner).

With a little tweaking, you should
be able to make perfect toast! Try
different types of bread, different
thicknesses, different starting
temperatures, etc. It should also
work for two slices of bread and
even bagels!

Recommended reading

All code in this project can be found
in this GitHub repository. The Edge
Impulse project used for training
the machine learning model is
found here.

Interestingly enough, creating
the perfect toast is an exercise in
predictive maintenance. Instead of
‘toast’, imagine we’re talking about
an expensive piece of machinery. Is
it possible to create a system that
predicts when the machinery will
fail (analogous to the toast burning)
and notify us before it does fail (e.g.
stopping the toasting process just
before burning)?

Performing routine maintenance
might help limit or prevent machine
failure, but it is often done more
than necessary, which increases
equipment downtime. Predictive
maintenance systems help limit
this downtime by notifying us
before a machine breaks so we can
repair it at the appropriate times.
You can read more about predictive
maintenance in this blog post.

https://github.com/ShawnHymel/perfect-toast-machine/blob/main/ptm_dataset_curation.ipynb
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/ptm_dataset_curation.ipynb
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/ptm_dataset_curation.ipynb
https://studio.edgeimpulse.com/public/129477/latest
https://studio.edgeimpulse.com/public/129477/latest
https://studio.edgeimpulse.com/public/129477/latest
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/perfect-toast-machine/perfect-toast-machine.ino
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/perfect-toast-machine/perfect-toast-machine.ino
https://github.com/ShawnHymel/perfect-toast-machine
https://studio.edgeimpulse.com/public/129477/latest
https://www.digikey.co.uk/en/blog/npi-blog-omron-automation

22 23
we get technical

Programming a calculator to
form concepts: the organizers
of the Dartmouth Summer
Research Project

retroelectro

Message to the reader: this
article complements a previous
article about the proposal for
the Dartmouth summer research
project on artificial intelligence.
If you would like to learn more,
please read ‘Programming a
Calculator to Form Concepts: The
Birth of Artificial Intelligence’

22

A Proposal for the
Dartmouth Summer
Research Project on
Artificial Intelligence

In the summer of 1956, a
groundbreaking proposal was made
for what would become a milestone
event in technological history:
the Dartmouth Summer Research
Project on Artificial Intelligence.
This initiative, conceived by a group
of visionary scientists, aimed to
explore the nascent field of AI,
which at the time was more a
concept of science fiction than a
tangible reality.

The proposal was simple yet
ambitious: to assemble a group
of mathematicians, logicians,
and computer scientists for two
months to delve into creating
machines capable of simulating
human intelligence. The goal was
not just to mimic human thought
but to surpass it, to automate
processes that until then had been
the exclusive domain of the human
mind.

This project laid the groundwork
for what we now recognize as AI/
ML, influencing everything from
the development of expert systems
to the neural networks that power
today’s AI applications. The
Dartmouth conference became
a beacon of innovation, igniting
a revolution that would reshape
technology, business, and everyday
life in ways its creators could hardly
envision.

This is the story of those creators.

23
we get technical

John McCarthy, Dartmouth
College

John McCarthy (1927-2011) is
most famous for coining the
term Artificial Intelligence. After
completing his undergraduate
degree at the California Institute
of Technology (Caltech) in 1948,
McCarthy pursued a PhD in
mathematics from Princeton
University. At the time, computers
were just beginning to emerge as
powerful tools for scientific and
engineering tasks, and McCarthy
saw their potential to model the
human thought process.

As part of his PhD program, he
spent at least one summer working
at Bell Labs. This is where he
met Claude Shannon and Marvin

Minsky. Finishing his doctorate,
Dr. McCarthy worked as a junior
professor at Princeton before
joining Dartmouth College’s
faculty in the summer of 1955.
While at Dartmouth College,
McCarthy introduced the term
‘Artificial Intelligence’ to describe
the scope of topics outlined in the
1956 Summer Research Project
Proposal.

One of McCarthy’s more significant
works was the development of the

Retro Electro fun fact: while
enrolled at Cal Tech, McCarthy
was suspended for not attending
any Physical Education classes,
and he enlisted in the US Army in
1945. Joining shortly before the war
ended.

“Every aspect of learning or any other
feature of intelligence can in principle be so
precisely described that a machine can be
made to simulate it.”

 – J. McCarthy

Written by David Ray,
Cyber City Circuits

https://emedia.digikey.com/view/199618710/21/
https://emedia.digikey.com/view/199618710/21/
https://emedia.digikey.com/view/199618710/21/

24 25
we get technical

LISP programming language. Due
to its flexible memory management
and ability to process symbolic
expressions quickly, LISP became
the language of choice for AI
research and development. It
introduced several pioneering
concepts, including tree data
structures, automatic storage
management, and a self-hosting
compiler.

In 1959 while working at Stanford
University, where he stayed until
retiring at the beginning of 2001, he
published a paper titled ‘Programs
with Common Sense,’ where he
worked with Marvin Minsky and
explained the need to find a way to
teach common sense and natural
law, aiming to equip AI systems
with the everyday knowledge that
humans take for granted.

McCarthy was an early pioneer
of time-share computing,
which allowed multiple users to
interact with a single computer
simultaneously. This idea was
instrumental in the development
of the modern internet and cloud
computing.

For more on time-share computing,
read the Retro Electro article on
‘The Aloha System: Task II’

Claude E. Shannon, Bell
Labs

Claude Elwood Shannon (1916-
2001) was an electrical engineer
and unicycle enthusiast. His father
was an attorney and judge, while
his mother was the principal of
the local high school. As a child,
he was a hobbyist mechanic who
built model planes and a radio-
controlled boat. He even built a
small telegraph between his house
and his childhood friend’s house.
As a young man, he earned money
by repairing radios at the local
store.

Being an overachiever, he
graduated from the University of
Michigan in 1936 with bachelor’s
degrees in mathematics and
electrical engineering. Afterward,
he found a position as a research
assistant running MIT’s ‘Differential

Analyzer’, which allowed him
to fund his master’s degree in
electrical engineering.

The ‘Differential Analyzer’ could
solve differential equations to the
sixth degree. Research scientists
presented him with equations each
day and Shannon configured the
machine to solve them.

The machine was made up of
around a hundred relays to control
the operations, and much of
his time was spent returning it
to working order and repairing
malfunctions. He said he would
think of new ways to design each
circuit as he worked on it. He found
that the symbolic logic he learned
at the University of Michigan could
be used to describe what happens
in a switching relay circuit.

His master’s thesis, ‘A Symbolic
Analysis of Relay and Switching
Circuits,’ is one of the most
important foundational works in
Computer Science. In it, he shows
how logic operators, like ‘and,’
‘or,’ etc., can be used to solve and
simplify problems with relays used
in telephone switching systems,

retroelectro

laying the groundwork for the
future of digital design. For formally
bringing Boolean logic to electrical
engineering, he was awarded
the Alfred Noble Prize (not to be
confused with the Nobel Prize)
in 1939. If there were a proper
beginning of the ‘digital age,’ this
document would likely be it.

Immediately following his master’s
program, he started a PhD program
in mathematics at MIT, where he
worked on problems describing
genetics using algebra and Boolean
operators.

After school, Dr. Shannon took a
position at Bell Laboratories, where
he solved problems ranging from
‘color coding’ to encryption. This
was during the beginning of the
United States’ active involvement
in World War II. While at Bell
Labs, Shannon seems to have
compulsively solved highly complex
problems that others couldn’t. He
was described as ‘finding answers
to important questions nobody else
was asking’. He was not ‘cleared’ to
work in the area of encryption, but
that did not stop him. In his spare
time, he worked on the problems
surrounding encryption and then
explained it to the engineers in

that department while having
lunch in the cafeteria. It was later
discovered that his work was
instrumental in the encryption
of communications used in the
Manhattan Project and between
Winston Churchill and Roosevelt.

In 1952, Shannon built ‘Theseus’.
An electromechanical ‘mouse
in a maze’ that could solve itself
automatically and in a very short
time. It was made up of a couple
of motors, several dozen relays,
and a bar magnet dressed up
like a mouse. It could navigate
a customizable maze to a goal
and after it initially solved the
maze, it could be lifted and placed
anywhere it would move straight to
the goal, without any false moves.

“The real significance of this mouse
and maze, lies in the four rather
unusual operations it is able to
perform. It has the ability to solve
a problem by trial and error means,
remember a solution and apply it
when necessary at a later date, add
new information to the solution
already remembered, and forget
one solution and learn a new one
when the problem is changed.” –
C.E. Shannon

Marvin Minsky, Harvard
University

If McCarthy was the ‘Father of AI,’
then Minsky was the Architect.
He grew up in New York City and
attended the Bronx High School of
Science and was a Navy veteran.
In an interview, Minsky explained
that when he graduated from grade
school in 1944, the military draft
was still active in support of World
War II. To avoid being drafted into
the Army, he enlisted in the Navy,
where he was trained in electronics,
radio, RADAR, etc. Concerning his
time in the Navy, he recounts that
he was in boot camp when Japan
surrendered, which was a relief.

The Bronx High School of Science
taught many of the world’s
visionaries, including Carl Sagan,

“That’s the story of my life, the interplay
between Mathematics and electrical
engineering.”

– C.E. Shannon

“(The) main reason the 1956 Dartmouth
workshop did not live up to my expectations
is that AI is harder than we thought.”

- Marvin Minsky

Retro Electro fun fact: legend has
it that during his tenure at Bell
Labs, Minsky invented the ‘Useless
Machine’ novelty toy, which is now
on office desks worldwide.

https://emedia.digikey.com/view/306614740/33/

26 27
we get technical

Richard Feynman, Neil deGrasse
Tyson, and many Pulitzer Prize and
Nobel Prize winners.

After two years in the Navy, Minsky
enrolled at Harvard University,
where he graduated with a degree
in mathematics. He then attended
Princeton University as a graduate
student, earning his PhD. While
attending Princeton, he worked at
nearby Bell Laboratories. During
this time, Minsky also began to
simulate human intelligence with a
project named SNARC.

The ‘Stochastic Neural Analog
Reinforcement Calculator’ (SNARC)
was a project at Bell Labs with
Marvin Minsky while he was a
graduate student at Princeton. It
is credited as being the very first
‘neural network’ computer ever
developed. Shannon would later
use the SNARC in his previously
mentioned ‘Theseus’ project.

After graduation, Dr. Minsky worked
briefly as a Junior Fellow at Harvard
before joining the faculty at MIT in
1958, where he continued until his
death in 2016.

In 1963, Minsky and McCarthy
founded MIT’s Artificial Intelligence
Lab. J.C.R Licklider and ARPA
funded the lab under the name
‘Project MAC’. Many things came
out of what is now known as
the MIT Computer Science and
Artificial Intelligence Laboratory
(CSAIL), including the first Time-
Share computing system, which
was improved upon by ‘Project
GENIE’ at Berkeley. CSAIL

is credited with many of the
technological innovations of the
late twentieth century.

Nathaniel Rochester, IBM

Nathaniel Rochester (1919-2001)
was a pivotal figure in the early
development of computing. He
attended MIT and graduated with
a bachelor’s degree in electrical
engineering in 1941. His career
began working at MIT’s Research
Labs to develop radar systems
for the U.S. Navy and later at
Sylvania, a bulb and vacuum tube
manufacturer, where he continued
to advance radar technology critical
to the war effort.

Following the war, in 1948,
Rochester joined IBM, where he
was one of the two key designers
of the IBM 701, the company’s
first mass-produced scientific
computer. Released in 1951, the
IBM 701 marked a significant leap
in computing power, enabling
complex calculations that were

previously impractical. This
machine also formally marks the
beginning of IBM’s move away
from conventional punchcard time
clocks and mechanical typewriters
to focus on electric computers.

Early in 1955, IBM tasked Rochester
with leading a new research
group at IBM focused on the new
fields of information theory and
automatic pattern recognition.
He programmed the first neural
network simulations on the IBM
704 in this effort.

In the 1960s, Rochester became
more involved in the broader
computing community. He
contributed to the design and
standardization of programming
languages, and his work influenced
the development of FORTRAN
at IBM, one of the earliest and
most widely used programming
languages of its day.

Pioneering Artificial
Intelligence

The proposal for the Dartmouth
Summer Research Project on AI,
led by John McCarthy, marked
a historic moment in computer
science. This initiative established
the foundational framework for
what would grow into the field of
AI, creating an environment where
ideas could thrive and machines
could start to mimic human
cognition. The completion of the
project marked not just an end, but
a beginning, igniting a decades-
long pursuit to create intelligent

retroelectro

The group that attended the Dartmouth Summer Research Project on Artificial Intelligence.

systems capable of learning,
reasoning, and adapting.

Today, we see the fruits of this
endeavor in the advanced AI
technologies that permeate our
lives, a testament to the visionary
foresight of the early pioneers at
Dartmouth.

Suggested reading

1.	 A Proposal For the Dartmouth
Summer Research Project on
Artificial Intelligence

2.	 Marvin Minsky Memorial (MIT
News)

3.	 Ray Solomonoff’s Personal
‘Dartmouth Archives’

4.	 ‘AI: The Tumultuous History
Of The Search For Artificial
Intelligence’ by D. Crevier

5.	 ‘Newell And Simon’s Logic

Theorist: Historical Background
and Impact On Cognitive
Modeling’

6.	 ‘Society of the Mind’ by Marvin
Minsky

7.	 ‘The Meeting of the Minds
That Launched AI’ by Grace
Solomonoff

8.	 The Turbulent Past and
Uncertain Future of Artificial
Intelligence by Eliza Strickland

9.	 ‘Oral History of Nathaniel
Rochester’ Interview by A.
Goldstein (June 1991)

10.	‘Programs With Common Sense’
by J. McCarthy

11.	‘A Symbolic Analysis of Relay
and Switching Circuits’ by C.E.
Shannon

12.	‘Claude E. Shannon: A
Retrospective on His Life, Work,

and Impact’ by R.G. Gallager

13.	(Video) ‘Claude Shannon –
Father of the Information Age’
from the University of California

14.	‘Claude E. Shannon: A Goliath
Amongst Giants’ Presented by
Nokia Bell Labs

15.	‘Mouse With a Memory’ by Bell
Labs

16.	‘SNARC’ from HistoryOf.AI

17.	(Video) Claude Shannon
demonstrates “Theseus”
Machine Learning @ Bell Labs

18.	(Video) Marvin Minsky Interview
(Recorded in 2002)

19.	(Video) Marvin Minsky Interview
(Recorded in 1990 for WGBH)

20.	(Video) Marvin Minsky
Interview Series (Life Stories of
Remarkable People)

http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf

http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf

http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf

https://news.mit.edu/2016/marvin-minsky-obituary-0125
https://news.mit.edu/2016/marvin-minsky-obituary-0125
https://raysolomonoff.com/dartmouth/
https://raysolomonoff.com/dartmouth/
https://archive.org/details/aitumultuoushist0000crev
https://archive.org/details/aitumultuoushist0000crev
https://archive.org/details/aitumultuoushist0000crev
https://www.researchgate.net/publication/276216226_Newell_and_Simon’s_Logic_Theorist_Historical_Background_and_Impact_on_Cognitive_Modeling
https://www.researchgate.net/publication/276216226_Newell_and_Simon’s_Logic_Theorist_Historical_Background_and_Impact_on_Cognitive_Modeling
https://www.researchgate.net/publication/276216226_Newell_and_Simon’s_Logic_Theorist_Historical_Background_and_Impact_on_Cognitive_Modeling
https://www.researchgate.net/publication/276216226_Newell_and_Simon’s_Logic_Theorist_Historical_Background_and_Impact_on_Cognitive_Modeling
https://archive.org/details/societyofmind00marv
https://archive.org/details/societyofmind00marv
https://spectrum.ieee.org/dartmouth-ai-workshop
https://spectrum.ieee.org/dartmouth-ai-workshop
https://spectrum.ieee.org/dartmouth-ai-workshop
https://spectrum.ieee.org/history-of-ai
https://spectrum.ieee.org/history-of-ai
https://spectrum.ieee.org/history-of-ai
https://ethw.org/Oral-History:Nathaniel_Rochester
https://ethw.org/Oral-History:Nathaniel_Rochester
https://ethw.org/Oral-History:Nathaniel_Rochester
http://jmc.stanford.edu/articles/mcc59/mcc59.pdf
http://jmc.stanford.edu/articles/mcc59/mcc59.pdf
https://dspace.mit.edu/handle/1721.1/11173
https://dspace.mit.edu/handle/1721.1/11173
https://dspace.mit.edu/handle/1721.1/11173
https://mast.queensu.ca/~math474/gallager-on-shannon-it2001.pdf
https://mast.queensu.ca/~math474/gallager-on-shannon-it2001.pdf
https://mast.queensu.ca/~math474/gallager-on-shannon-it2001.pdf
https://youtu.be/z2Whj_nL-x8?si=OFa1rXJi-D8_JGBM
https://youtu.be/z2Whj_nL-x8?si=OFa1rXJi-D8_JGBM
https://youtu.be/z2Whj_nL-x8?si=OFa1rXJi-D8_JGBM
https://www.bell-labs.com/claude-shannon/
https://www.bell-labs.com/claude-shannon/
https://www.bell-labs.com/claude-shannon/
https://www.bell-labs.com/claude-shannon/assets/images/automata/pages-from-shannon-bell-labs-reporter-1952-vol-1-1-carousel-01.pdf
https://www.bell-labs.com/claude-shannon/assets/images/automata/pages-from-shannon-bell-labs-reporter-1952-vol-1-1-carousel-01.pdf
https://historyof.ai/snarc/
https://youtu.be/_9_AEVQ_p74?si=89lP490k8ZyRWswo
https://youtu.be/_9_AEVQ_p74?si=89lP490k8ZyRWswo
https://youtu.be/_9_AEVQ_p74?si=89lP490k8ZyRWswo
https://www.youtube.com/watch?v=CIoddZ1NOVM
https://www.youtube.com/watch?v=CIoddZ1NOVM
https://www.youtube.com/watch?v=DrmnH0xkzQ8
https://www.youtube.com/watch?v=DrmnH0xkzQ8
https://youtu.be/CB2SsvcECzI?si=xl3Mvgr4iWYLKY_Q
https://youtu.be/CB2SsvcECzI?si=xl3Mvgr4iWYLKY_Q
https://youtu.be/CB2SsvcECzI?si=xl3Mvgr4iWYLKY_Q

28 29
we get technical

This article explores how
preprocessing prepares data
for machine learning, tackles
challenges like missing values and
outliers, and helps ensure fair and
accurate model results. Further, it
explores vital techniques such as
scaling, rebalancing, and variable
transformation.

How preprocessing
prepares data for ML
projects

Data-preparation, or preprocessing,
is one of the most crucial steps
that nearly every machine learning
project must undergo to succeed.
The process prepares raw data
for analysis by addressing
potential issues found in the
samples by handling missing
values, addressing outliers and
inconsistencies, and encoding
features into a suitable format for
the algorithm. Besides ensuring
data quality, preprocessing also
reduces noise and often helps
prevent or address issues such as
overfitting. Finally, preprocessing is
an important task when optimizing
the performance of an algorithm,
as the data-preparation step often

helps reduce the dimensionality
of the data by identifying the most
relevant features.

Scaling, normalization, and
standardization

Some algorithms, such as kNN
(K-Nearest Neighbors) or SVMs
(Support Vector Machines), rely
on the distance between data
samples and are thus sensitive
to the magnitude of features. If
the distances in the data are off,
some instances may dominate
the learning process, leading
to poor model performance.
Scaling features ensure that they
contribute equally to the model’s
learning process, leading to fair and
accurate results.

There are various methods
engineers can employ to ensure
fair scaling across the variables.
However, min-max scaling is a
popular and easy-to-understand
method that transforms features
to a range between zero and one,
ensuring that the minimum value
becomes zero, the maximum
value becomes one, and all other
values are proportionally scaled

in between, depending on their
original value.

In another popular approach,
Z-score standardization, each
variable is converted to have a
mean of zero and a standard
deviation of one. The method
achieves this by subtracting the
global mean of the variable from
each value in the dataset and then
dividing it by the variable’s standard
deviation.

How oversampling and
undersampling help
maintain fairness

Datasets with significant disparities
in class distribution (e.g., 90%
positive instances, 10% negative)
can cause certain classifiers, such
as kNN, to ignore the minority class
or overestimate the importance of
positive samples. In such cases,
the training set can be rebalanced
using one of two methods. In
undersampling, entries from the
majority class are omitted, while
in oversampling, samples from the
minority class are duplicated to
achieve a balanced representation
of the classes.

Transforming variables:
one-hot encoding and
label-encoding

Some algorithms can only process
numerical values. Therefore, some
datasets require representing
textual labels with numbers. This
task can be achieved, for example,
by introducing n new attributes –
each representing one of the n old
textual values. The new features
have a value of 0 everywhere
except for the exact position that
represents the old label of the data
point (one-hot encoding.)

Alternatively, the original labels can
be assigned different numerical
values. All data points with
that label then receive the new
numerical index of the label (label-
encoding.)

Addressing missing values
in ML preprocessing

The simplest solution is to delete
samples with missing values from
the training dataset. However, this
is not an option if the model later
needs to handle missing values
(e.g., during testing.)

Alternatively, one can introduce a
custom N/A or null value, select a
random value from another entry,
or compute the average or nearest
integer value. These imputation
methods are only meaningful when
the number of missing values is
small and when the entries with
missing data are too critical to be
deleted.

How to apply preprocessing
to prevent data leakage

Data leakage describes a problem
where information from the training
set leaks into the test set, which
must never happen. Therefore, the
original dataset must always be
divided first (e.g., using holdout or
cross-validation) before applying
any preprocessing steps. Finally,
these preprocessing steps should
only be applied to the test dataset
rather than the training data. The
test sample must always remain
unaltered to simulate realistic
conditions when evaluating the
model’s performance later.

Summary

Preprocessing is a critical step
in machine learning projects that
prepares data for analysis and
ensures the project’s success.
It involves addressing issues
like missing values, outliers, and
inconsistencies and encoding
features in a suitable format for the
algorithm. Preprocessing enhances

data quality, reduces noise, and
helps prevent overfitting.

Scaling techniques like min-max
scaling ensure that features
contribute equally to the learning
process by distributing all values
between zero and one. At the same
time, Z-score standardization
converts variables to have a mean
of zero and a standard deviation of
one.

Rebalancing techniques like
oversampling and undersampling
can address class imbalances in
the data. Transforming variables
through one-hot encoding and label
encoding enables the processing
of textual data in algorithms that
can only handle numbers. Handling
missing values can involve deletion,
imputation, or assigning custom
values.

Finally, dividing the original dataset
before preprocessing is crucial
to prevent data leakage, where
information from the training set
influences the test set. The test
set should remain unchanged for a
realistic evaluation of the model’s
performance.

Figure 1: One-hot encoding is generally better suited for
nominal variables without an inherent order. However,
label encoding is often a better choice for values

that can be compared, as the
resulting numbers can be chosen
to reflect the original ordering.

Written by Maker.io Staff

What is data-preparation in ML, and
why is it crucial for success?

30 31
we get technical

How to rapidly design and
deploy smart machine
vision systems
Written by Jeff Shepard

The need for machine vision
is growing across a range of
applications, including security,
traffic and city cameras, retail
analytics, automated inspection,
process control, and vision-
guided robotics. Machine vision
is complex to implement and
requires the integration of diverse
technologies and sub-systems,
including high-performance
hardware and advanced artificial
intelligence/machine learning
(AI/ML) software. It begins with
optimizing the video capture
technology and vision I/O to meet
the application needs and extends
to multiple image processing
pipelines for efficient connectivity.
It is ultimately dependent on
enabling the embedded-vision
system to perform vision-based
analytics in real time using high-
performance hardware such as
field programmable gate arrays

(FPGAs), systems on modules
(SOMs), systems on chips (SoCs),
and even multi-processor systems
on chips (MPSoCs) to run the
needed AI/ML image processing
and recognition software. This can
be a complex, costly, and time-
consuming process that is exposed
to numerous opportunities for cost
overruns and schedule delays.

Instead of starting from scratch,
designers can turn to a well-
curated, high-performance
development platform that speeds
time to market, controls costs,
and reduces development risks

while supporting high degrees
of application flexibility and
performance. A SOM-based
development platform can
provide an integrated hardware
and software environment,
enabling developers to focus
on application customization
and save up to nine months of
development time. In addition to
the development environment,
the same SOM architecture is
available in production-optimized
configurations for commercial and
industrial environments, enhancing
application reliability and quality,
further reducing risks, and
speeding up time to market.

This article begins by reviewing
the challenges associated with the
development of high-performance
machine vision systems, then
presents the comprehensive
development environment offered
by the Kria KV260 vision AI starter
kit from AMD Xilinx, and closes
with examples of production-

Figure 1: An order of magnitude less
energy is needed for INT8 (8b Add)
operations compared with FP32
operations (32b Add). Image source:
AMD Xilinx

Instead of starting from scratch, designers
can turn to a well-curated, high-performance
development platform that speeds time,
controls costs, and reduces development risks
while supporting high degrees of application
flexibility and performance.

https://www.digikey.co.uk/en/product-highlight/x/xilinx/kv260-vision-ai-starter-kit
https://www.digikey.co.uk/en/supplier-centers/xilinx

32 33
we get technical

ready SOMs based on the Kira 26
platform designed to be plugged
into a carrier card with solution-
specific peripherals.

It begins with data type
optimization

The needs of deep learning
algorithms are evolving. Not every
application needs high-precision
calculations. Lower precision data
types such as INT8, or custom data
formats, are being used. GPU-
based systems can be challenged
with trying to modify architectures
optimized for high-precision data
to accommodate lower-precision
data formats efficiently. The
Kria K26 SOM is reconfigurable,
enabling it to support a wide range
of data types from FP32 to INT8
and others. Reconfigurability also
results in lower overall energy
consumption. For example,
operations optimized for INT8

consume an order of magnitude
less energy compared with an FP32
operation (Figure 1).

Optimal architecture
for minimal power
consumption

Designs implemented based on a
multicore GPU or CPU architecture
can be power-hungry based on
typical power usage patterns:

	■ 30% for the cores
	■ 30% for the internal memory (L1,

L2, L3)
	■ 40% for the external memory

(such as DDR)

Frequent accesses to inefficient
DDR memory are required by
GPUs to support programmability
and can be a bottleneck to high
bandwidth computing demands.
The Zynq MPSoC architecture
used in the Kria K26 SOM supports
the development of applications
with little or no access to external
memory. For example, in a

How to rapidly design and deploy smart machine vision systems

Figure 2: In this typical automotive application, the GPU requires multiple accesses
to DDR for communication between the various modules (left), while the pipeline
architecture of the Zynq MPSoC (right) avoids most DDR accesses. Image source:
AMD Xilinx

 Figure 4: Typical image processing flow for an AI-based ANPR application. Image source: AMD Xilinx

Figure 5: The Kria KV260 vision
AI starter kit is a comprehensive
development environment for machine
vision applications. Image source: AMD
Xilinx

Figure 3: After a relatively few iterations, pruning can reduce model complexity (Gop)
by 10X and improve performance (FPS) by 5X, with only a 1% reduction in accuracy
(mAP). Image source: AMD Xilinx

typical automotive application,
communication between the GPU
and various modules requires
multiple accesses to external DDR
memory, while the Zynq MPSoC-
based solution incorporates a
pipeline designed to avoid most
DDR accesses (Figure 2).

Pruning leverages the
advantages

The performance of neural
networks on the K26 SOM can be
enhanced using an AI optimization
tool that enables data optimization
and pruning. It’s very common
for neural networks to be over-
parameterized, leading to high
levels of redundancy that can
be optimized using data pruning
and model compression. Using
Xilinx’s AI Optimizer can result
in a 50x reduction in model
complexity, with a nominal impact
on model accuracy. For example,
a single-shot detector (SSD) plus
a VGG convolution neural net
(CNN) architecture with 117 Giga
Operations (Gops) was refined
over 11 iterations of pruning
using the AI Optimizer. Before
optimization, the model ran 18
frames per second (FPS) on a
Zynq UltraScale+ MPSoC. After
11 iterations – the 12th run of

the model – the complexity was
reduced from 117 Gops to 11.6
Gops (10X), performance increased
from 18 to 103 FPS (5X), and
accuracy dropped from 61.55 mean
average precision (mAP) for object
detection to 60.4 mAP (only 1%
lower) (Figure 3).

Real-world application
example

A machine learning application for
automobile license plate detection
and recognition, also called auto
number plate recognition (ANPR),
was developed based on vision
analytics software from Uncanny
Vision. ANPR is used in automated
toll systems, highway monitoring,
secure gate and parking access,

and other applications. This ANPR
application includes an AI-based
pipeline that decodes the video and
preprocesses the image, followed
by ML detection and OCR character
recognition (Figure 4).

Implementing ANPR requires
one or more H.264 or H.265
encoded real-time streaming
protocol (RTSP) feeds that are
decoded or uncompressed. The
decoded video frames are scaled,
cropped, color space converted,
and normalized (pre-processed),
then sent to the ML detection
algorithm. High-performance ANPR
implementations require a multi-
stage AI pipeline. The first stage
detects and localizes the vehicle
in the image, creating the region
of interest (ROI). At the same time,
other algorithms optimize the
image quality for subsequent use
by the OCR character recognition
algorithm and track the vehicle’s
motion across multiple frames.
The vehicle ROI is further cropped
to generate the number plate ROI
processed by the OCR algorithm
to determine the characters in the
number plate. Compared with other
commercial SOMs based on GPUs
or CPUs, Uncanny Vision’s ANPR
application ran 2-3X faster on the
Kira KV260 SOM, costing less than
$100 per RTSP feed.

34 35
we get technical

How to rapidly design and deploy smart machine vision systems

Smart vision development
environment

Designers of smart vision
applications like traffic and city
cameras, retail analytics, security,
industrial automation, and robotics
can turn to the Kria K26 SOM AI
Starter development environment.
This environment is built using
the Zynq UltraScale+ MPSoC
architecture and has a growing
library of curated application
software packages (Figure 5). The
AI Starter SOM includes a quad-
core Arm Cortex-A53 processor,
over 250 thousand logic cells,
and an H.264/265 video codec.
The SOM also has 4 GB of DDR4
memory, 245 IOs, and 1.4 tera-
ops of AI compute to support the
creation of high-performance vision
AI applications offering more than
3X higher performance at lower
latency and power compared with
other hardware approaches. The
pre-built applications enable initial
designs to run in less than an hour.

To help jump-start the development
process using the Kria K26 SOM,

Figure 6: The KV260
vision AI starter kit
includes: (top row,
left to right) power
supply, Ethernet
cable, microSD
card, and (bottom
row, left to right)
USB cable, HDMI
cable, camera
module. Image:
AMD Xilinx

Figure 7: Production-optimized Kira 26
SOMs for industrial and commercial
environments are designed to be
plugged into a carrier card with
solution-specific peripherals. Image:
DigiKey

AMD Xilinx offers the KV260 vision
AI starter kit that includes a power
adapter, Ethernet cable, microSD
card, USB cable, HDMI cable, and
a camera module (Figure 6). If the
entire starter kit is not required,
developers can simply purchase
the optional power adapter to start
using the Kira K26 SOM.

Another factor that speeds
development is the comprehensive
array of features, including
abundant 1.8 V, 3.3 V single-
ended, and differential I/Os with
four 6 Gb/s transceivers and four
12.5 Gb/s transceivers. These
features enable the development
of applications with higher
numbers of image sensors per
SOM and many variations of sensor
interfaces such as MIPI, LVDS,
SLVS, and SLVS-EC, which are not
always supported by application-
specific standard products (ASSPs)
or GPUs. Developers can also
implement DisplayPort, HDMI,
PCIe, USB2.0/3.0, and user-defined
standards with the embedded
programmable logic.

Finally, the development of AI
applications has been simplified
and made more accessible by
coupling the extensive hardware
capabilities and software
environment of the K26 SOM
with production-ready vision
applications. These vision
applications can be implemented
with no FPGA hardware design
required and enable software
developers to quickly integrate
custom AI models and application
code and even modify the vision
pipeline. The Vitis unified software
development platform and libraries
from Xilinx support common design
environments, such as TensorFlow,
Pytorch, and Café frameworks,
as well as multiple programming
languages including C, C++,
OpenCL, and Python. There is also
an embedded app store for edge
applications using Kria SOMs from
Xilinx and its ecosystem partners.
Xilinx offerings are free and open
source and include smart camera
tracking and face detection, natural

language processing with smart
vision, and more.

Production optimized Kira
26 SOMs

Once the development process has
been completed, production-ready
versions of the K26 SOM designed
to be plugged into a carrier card
with solution-specific peripherals
that can speed the transition into
manufacturing (Figure 7) are
available. The basic K26 SOM is
a commercial-grade unit with a
temperature rating of 0°C to +85°C
junction temperature, as measured
by the internal temperature sensor.

An industrial-grade version of the
K26 SOM rated for operation from
-40°C to +100°C, is also available.

The industrial market demands
long operational life in harsh
environments. The industrial-grade
Kria SOM is designed for ten years
of operation at 100°C junction
and 80% relative humidity and to
withstand up to 40 g of shock,
and 5 g root mean square (RMS)
of vibration. It also comes with a
minimum production availability of
ten years to support long product
lifecycles.

Summary

Designers of machine vision
applications such as security,

traffic, and city cameras, retail
analytics, automated inspection,
process control, and vision-guided
robotics can turn to the Kria K26
SOM AI Starter to speed time to
market, help to control costs and
reduce development risks. This
SOM-based development platform
is an integrated hardware and
software environment, enabling
developers to focus on application
customization and save up to nine
months of development time.
The same SOM architecture is
available in production-optimized
configurations for commercial and
industrial environments, further
speeding time to market. The
industrial version has a minimum
production availability of 10 years
to support long product lifecycles.

https://www.digikey.co.uk/en/products/detail/amd-xilinx/SK-KV260-G/13985269
https://www.digikey.co.uk/en/products/detail/amd-xilinx/SK-KV260-G/13985269
https://www.digikey.co.uk/en/products/detail/amd-xilinx/HW-BACCP01-SK-G/14111914
https://www.digikey.co.uk/en/products/detail/amd-xilinx/HW-PSA01-SK-G/14111903
https://www.digikey.co.uk/en/products/detail/amd-xilinx/SM-K26-XCL2GC/13985266
https://www.digikey.co.uk/en/products/detail/amd-xilinx/SM-K26-XCL2GI/13985243

36 37
we get technical

Written by Pete Bartolik

Technologies developed for
automotive applications frequently
transfer to other markets due
to automobile manufacturers’
rigorous requirements for reliability,
performance, and the need for
fast data rates in an electronically
hostile environment. That’s why
Gigabit Multimedia Serial Link
(GMSL) cameras are finding ready
markets for vision applications
in areas such as automation and
robotics, smart agriculture, digital
healthcare, avionics, robotaxis,
and retail and warehouse inventory
management.

Initially introduced for addressing
applications for high-speed video
and data transmission in vehicles,
Analog Devices GMSL is a widely
adopted and proven technology for
bringing new levels of performance
to high-speed video links and
enabling multi-streaming over a
single cable.

Vision applications require very
large data streams to ensure high-
quality video. A full HD image is
comprised of 1080 rows by 1920
columns. That amounts to 2 million
pixels, each of which consists of
a red, green, and blue element,
resulting in 6 million elements.
Each element represents 8 bits
of data, so every frame results
in nearly 50 Mbps of data. At 60
frames per second, the required
data rate for one camera is over
three-and-a-half Gbps.

First-generation GMSL, first
available in 2008, utilized the

With cameras scaled down to the
level of CMOS sensors, they can
produce what once was considered
incredible quality at low cost and
with low power demands. Image
sensors have millions of receptor
elements, each of which converts
measurements into digital values
to be streamed via serial data lanes
of a parallel interface, along with
synchronization information.

Both GMSL2 and GMSL3 utilize
MIPI interface standards that
provide designers and vendors
access to a wide range of image
sensors for GMSL cameras.

GMSL versus GigE

Engineers starting out on vision
applications will no doubt quickly
face a decision on whether to use
GMSL or gigabit Ethernet (GigE)
vision technology. GigE is widely
used in industrial applications
due largely to its reliance on
Ethernet network infrastructure and
standards.

GigE Vision cameras with 2.5
GigE, 5 GigE, and 10 GigE are
commonplace in applications
today, and 100 GigE state-of-the-
art cameras can utilize up to a 100
Gbps data rate. GMSL is designed
to transmit data over coaxial cable
or shielded twisted pair cable at
up to 15 meters, compared to 100
m for GigE, although both may be
exceeded under certain conditions.

Each technology is capable of
transmitting data and power

low-voltage differential signaling
(LVDS) standard to deliver parallel
data downlink rates up to 3.125
Gbps. That was particularly
suited for conveying data from
multiple camera systems and
other advanced driver assistance
applications (ADAS), as well as
the growing use of in-car, high-
definition flat panel displays.

A second generation, GMSL2, was
introduced in 2018, increasing data
rates up to 6 Gbps and supporting
more standard highspeed video
interfaces, including HDMI and
the MIPI interface standard, a
popular image sensor interface
for consumer and automotive
cameras. These advances
accommodated full high definition
(FHD) displays and cameras with
resolution up to 8 MP.

GMSL3, the next generation, can
deliver data up to 12 Gbps over
a single cable, supports multiple
4K resolution streams, the daisy-
chaining of multiple displays, and
aggregation of multiple cameras
such as those located on the front,
back, and sides of a vehicle to
provide a 360° viewing capability.
Today, increasing numbers
of automobile manufacturers
supplement rear and side-view
mirrors with cameras, utilize
forward and rear-facing cameras
for collision avoidance, and internal
cabin cameras for monitoring driver
and passenger safety. GMSL3 can
aggregate data from multiple video
feeds as well as LiDAR and radar.

Road-tested GMSL cameras
drive into new markets

https://www.digikey.co.uk/en/supplier-centers/analog-devices

38 39
we get technical

through the same cable: GMSL
uses Power over Coax (PoC) so
video, audio, control, data, and
power can be transported on a
single channel. Most GigE Vision
applications rely on Power over
Ethernet (PoE) for 4-pair Ethernet,
or less commonly, Power over Data
Line (PoDL) for Single-Pair Ethernet
(SPE).

System requirements and
application needs will determine
which vision technology is
most appropriate. GigE Vision,
for example, may offer some
advantages for single-camera
applications, particularly where
they connect directly to a PC or
an embedded platform with an
Ethernet port.

When using multiple cameras, GigE
Vision applications will require use
of a dedicated Ethernet switch,
a network interface card (NIC)
with multiple Ethernet ports, or an
Ethernet switch IC. That switching
requirement can potentially reduce
the maximum total data rate and
introduce unpredictable latency
between the cameras and the
terminal device, whereas GMSL
provides a simpler, more direct
architecture.

GigE Vision devices may support
higher resolution and a higher
frame rate – or both simultaneously
– with additional buffering and
compression. Frame buffering and
processing are not provided by
GMSL devices, so resolution and
frame rate depend on what the
image sensor can support within
the link bandwidth. Engineers will
need to determine a simple trade-
off between resolution, frame rate,
and pixel bit depth.

GMSL simplifies high-speed
video architecture

GigE Vision cameras typically
utilize a signal chain that includes
an image sensor, a processor, and
an Ethernet physical layer (PHY)
(Figure 1). Raw image data from
the sensor is converted by the
processor into Ethernet frames,
often relying on compression or
frame buffering to fit the data
rate of the supported Ethernet
bandwidth.

The GMSL camera signal chain
utilizes a serializer/deserializer
(SerDes) architecture that avoids
the use of a processor (Figure 2).
Instead, image sensor parallel data
is converted by the serializer into

a high-speed serial data stream.
On the back end, a deserializer
converts the serial data back into
parallel form for processing by
an electronic control unit (ECU)
system-on-chip (SoC).

The GMSL camera architecture
makes it simpler to design small
form factor cameras with low
power consumption. Serializers
can directly connect to cameras
through standard MIPI CSI-2
interface and transmit packetized
data through the GMSL link.

A typical host device is a
customized embedded platform
with one or more deserializers that
transmit image data through MIPI
transmitters in the same format as
the image sensor MIPI output. New
GMSL camera drivers are required
for customized designs, but if there
is an existing driver for the image
sensor, it can be utilized with just
a few profile registers, or register
writes to enable a video stream
from cameras to a control unit.

GMSL components

ADI offers a comprehensive
portfolio of serializers and
deserializers to support a variety
of interfaces. These feature robust
PHY designs, low bit error rates
(BER), and backward compatibility.
Any video protocols can be bridged
together – for example, HDMI to the
Open LVDS Display Interface (oLDI).

Engineers will need to select
the best components based on

Figure 1: Representation of key signal chain components on the sensor
side of GigE Vision cameras. Image source: Analog Devices, Inc.

Figure 3: A schematic
illustrating the data
stream utilizing
MAX96717 serializers.
Image source: Analog
Devices, Inc.

Road-tested GMSL cameras drive into new markets

application needs, such as device
interfaces, data rates, bandwidth,
power consumption, environmental
conditions, and cable length.
Other factors include EMI, error
handling, and signal integrity.
Some examples of ADI’s GMSL
components include:

	■ MAX96717, a CSI-2 to GMSL2
serializer (Figure 3), operates at a
fixed rate of 3 Gbps or 6 Gbps in
the forward direction and 187.5
Mbps in the reverse direction

	■ MAX96716A, which converts
dual GMSL2 serial inputs to MIPI
CSI-2. The GMSL2 inputs operate
independently and video data
from both can be aggregated for
output on a single CSI-2 port or
replicated on a second port for
redundancy

	■ The MAX96724, a quad
tunneling deserializer,
converts four GMSL 2/1
inputs to 2 MIPI D-PHY or
C-PHY outputs. Data link
rates are 6/3 Gbps for GMSL2
and 3.12 Gbps for GMSL1,
and reverse link rates of 187.5
Mbps for GMSL2 and 1 Mbps
for GMSL1

	■ The MAX96714 deserializer
converts a single GMSL 2/1
input to MIPI CSI-2 output,
with a fixed rate of 3 Gbps or

Figure 2: GMSL cameras utilize a simpler signal chain
architecture on the sensor side than GigE Vision.
Image source: Analog Devices, Inc.

Conclusion

With their reduced complexity,
GMSL cameras are more compact
and generally able to provide
a more cost-effective solution
compared to GigE Vision. GMSL
provides reliable transport of
high-resolution digital video with
microsecond latency for a growing
range of camera and display-based
applications, from machine learning
and autonomous operations to
infotainment and safety. Millions
of GMSL links are enhancing the
driver experience on the road today,
attesting to their reliability and
performance.

6 Gbps in the forward direction
and 187.5 Mbps in the reverse
direction

	■ The MAX96751 is a GMSL2
serializer with HDMI 2.0 input
that converts HDMI to single or
dual GMSL2 serial protocol. It
also enables full-duplex, single-
wire transmission of video and
bidirectional data

	■ The MAX9295D converts single-
or dual-port 4-lane MIPI CSI-2
data streams to GMSL2 or
GMSL1

ADI also offers several
development tools, such as the
MAX96724-BAK-EVK# evaluation
kit for the MAX96724 devices.

https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96717GTJ-VY/16675118
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96716AGTM-VY/22107593
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96724FGTN-VY/18713765
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96714RGTJ-V/20841739
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96751GTN-V/24617867
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX9295DGTM-VY-T/24613364
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/max96724-bak-evk/18713767

40 41
we get technical

The ability for machines to interpret
and analyze visual data is critical
to many industries of today,
enabling automated systems to
extract meaningful information
from images or video streams. At
its core, this technology mimics
how we perceive the world around
us but leverages computational
power, advanced algorithms, and
specialized hardware to process
vast amounts of visual data with
high precision and speed.

The impact of machine and
computer vision extends across
a number of industries. In
manufacturing, vision systems play
a crucial role in quality control and
defect detection. In automotive,
vision enables autonomous
vehicles to perceive and navigate
their surroundings. Healthcare
benefits from medical imaging
applications, such as AI-assisted
diagnostics, while retail and
security leverage vision for facial
recognition and behavioral analysis.

Modern machine vision systems
rely on a combination of hardware
and software components:

	■ Sensors and cameras: these
capture images and video,

ranging from simple 2D
cameras to advanced LiDAR
and hyperspectral imaging
systems

	■ Processing units: GPUs, TPUs,
FPGAs, and AI accelerators
process visual data in real time,
supporting deep learning-based
decision-making

	■ Algorithms: classical
techniques, such as edge
detection and template
matching, coexist with modern

Understanding computer
and machine vision
Written by Harry Fowle, Electronic Specifier

40

AI-driven approaches like
convolutional neural networks
(CNNs) and transformer-based
vision models

	■ Interfaces and communication
protocols: standardized
interfaces (e.g., USB3 Vision,
GigE Vision, MIPI) and
industrial protocols (EtherCAT,
Modbus) facilitate seamless
integration with broader
automation systems

As the technology continues to
evolve, machine and computer
vision are shifting towards real-
time, AI-powered, and Edge-based
implementations. This article
explores the history, evolution, and
current landscape of machine/
computer vision, diving into the
technologies, topologies, and
interfaces that enable them.

The history of computer and
machine vision

Whilst machine and computer
vision seem like brand-new cutting-
edge technology, its origins actually
date back to the 1950s and 1960s,
when researchers began exploring
the possibility of enabling machines
to interpret visual data. At these
early stages, computer vision was
primarily an academic pursuit,
focused on recognizing simple
patterns such as handwritten
text and basic geometric shapes.
Early efforts relied on rudimentary
image processing techniques like
edge detection and thresholding,
laying the foundations for future
advancements. Fast forward to
the 1970s and feature extraction
methods, including edge detection
algorithms such as the Sobel
operator, allowed for more
sophisticated object recognition.
Researchers also began developing
techniques for 3D reconstruction,
moving beyond simple two-
dimensional image analysis.

The 1980s was a big decade for the
technology, finally seeing its first

practical applications, particularly
in industrial automation. The
emergence of digital imaging
technology enabled early vision
systems to be deployed for tasks
such a defect detection, part
inspection, and barcode reading.
During this period, industries
started adopting machine vision for
quality control in manufacturing,
leveraging these early systems to
improve efficiency and accuracy
across production lines. The
1990s saw further advancements,
particularly in statistical image
analysis and pattern recognition.
The introduction of early neural
networks into image processing
signaled the beginning of AI-driven
vision, though the technology
was still in its infancy. Meanwhile,
improvements in hardware,
especially computational power,
were making it possible to process
images much faster and more
efficiently. Feature-based vision

techniques, such as Scale-Invariant
Feature Transform (SIFT) and
Speeded-Up Robust Features
(SURF), began cropping up in
the 2000s, massively improving
object recognition. This period
also saw the rapid expansion of
3D vision technologies, including
stereo cameras and structured
light systems, which allowed for
more precise depth perception in
automated vision systems.

However, the 2010s were the real
turning point thanks to the rise of
deep learning. The introduction
of convolutional neural networks
(CNNs) revolutionized computer
vision by surpassing traditional
algorithmic approaches. In
2012, the success of AlexNet
in the ImageNet competition
demonstrated that AI-powered
models could achieve human-level
accuracy in image classification,
sparking widespread interest

Figure 1: Modern
machine vision
system

Figure 2: Camera performing 360° inspection of products on a conveyor

https://www.pinecone.io/learn/series/image-search/imagenet/
https://www.pinecone.io/learn/series/image-search/imagenet/

42 43
we get technical

(x,y,z)

(xL,yL)

a

(xR,yR)

Left Camera

Right Camera

β
ß

C

in deep learning for vision
applications. This breakthrough
accelerated the development
of more sophisticated AI-based
vision systems, which soon found
applications in autonomous
vehicles, medical diagnostics,
robotics, and facial recognition.
Deep learning models such
as ResNet, YOLO, and Vision
Transformers further pushed the
boundaries of what was possible in
computer vision, enabling real-time
object detection and recognition
with unprecedented accuracy.

As vision systems have become
increasingly reliant on AI the focus
has shifted towards real-time
processing and Edge computing.
Edge AI has allowed machine
vision applications to function in
environments where latency was
critical, such as robotics, industrial
automation, and security systems.
Today, machines and computers
are embedded across a wide range
of industries, from smart factories

to AI-powered medical imaging.
Advances in sensor technology,
AI-driven models, and high-speed
processors continue to refine and
expand the capabilities of modern
vision systems.

Topologies, types, and
technologies in computer
and machine vision

Computer and machine vision
systems are built on various
topologies, sensor types, and
processing technologies, each
suited for different applications.
Depth perception technologies,
including structured light, stereo
vision, time-of-flight (ToF),
and LiDAR, provide different
approaches to 3D vision, enabling
machines to understand spatial
relationship and movement with
greater accuracy.

The topologies for depth sensing:

Structured light
Structured light depth sensing
operates by projecting a predefined
pattern – often a grid, stripe, or
dot matrix – onto a scene and
capturing its deformation with
a camera. By analyzing how the
projected pattern distorts upon
contact with surfaces, the system
reconstructs depth information
with high precision. This technique
is commonly implemented using
infrared (IR) sources to avoid visible
light interference.

As demonstrated in Figure 3,
the depth is computed using
triangulation principles. The
projector and camera form a
stereo vision system, where
the displacement of structured
patterns provides disparity
information that translates into
depth.

Depth, Z, is determined using the
formula:

Here, B is the baseline distance
between the projector and camera,
f is the focal length, and d is the
disparity.

Different projection encoding
methods can be used to optimize
accuracy, speed, or robustness.
Phase-shift encoding uses a
sinusoidal (wave-like) pattern
projected with multiple phase shifts
to calculate phase differences at
subpixel precision. Gray code/
binary-coded patterns make use of
sequential binary patterns uniquely

encoded onto each pixel, making it
far more robust against occlusions
and object discontinuities. Speckle
projection is a pseudo-random dot
matrix which enables dense depth
estimation with a single frame, for
example with Apple’s Face ID.

Technical advantages:
	■ High spatial resolution and

depth accuracy at short ranges
(typically under 5m)

	■ Effective for applications
requiring fine-grained depth
maps, such as 3D scanning,
biometric authentication
(e.g., Face ID), and industrial
metrology

	■ Real-time operation with
structured illumination strategies
like phase-shifting or binary-
coded patterns

Challenges:
	■ Susceptible to ambient light

variations, making outdoor
performance unreliable

	■ Requires a high-framerate
camera and precise calibration
for accurate reconstruction

	■ Performance degrades with

highly reflective or transparent
surfaces

Stereo vision
Stereo vision replicates human
binocular perception by capturing
two images from slightly offset
cameras and computing depth
through disparity analysis.

The correspondence problem
– matching pixels between left
and right images – is addressed
through algorithms such as block
matching, semi-global matching
(SGM), or deep learning-based
methods. It is important to consider
with disparity map computation
that:

	■ Local methods, such as block
matching, are faster but more
sensitive to noise and texture

Figure 3: A regular striped pattern is projected
onto the ball. The rounded surface of the ball
distorts the stripes, and the distorted image is
captured by a camera for analysis and object
reconstruction.

Figure 4: A standard
stereo vision system
example.

	■ Global methods, such as
SGM, optimize for disparity
consistency across images

	■ Deep learning methods, like
CNNs and transformer-based
models, improve robustness in
low-texture or occluded regions

The resulting disparity map then
provides relative depth estimation
where the baseline (distance
between cameras) and focal length
determine the depth accuracy. A
larger baseline improves depth
precision but increases occlusion.

Technical advantages:
	■ Passive system that does not

require active light projection,
enabling outdoor operation

	■ Well-suited for robotic
navigation, SLAM (Simultaneous
Localization and Mapping), and
industrial automation

	■ Scalable and cost-effective when
using high-resolution CMOS or
CCD sensors

Challenges:
	■ Performance is highly dependent

on image texture; uniform or
repetitive surfaces lead to poor
disparity matching

	■ Requires significant
computational resources for

Time difference

Reflected light

Emitted light

Light-emitting
element

Light-receiving
element

Target
object

Emitted light
(pulse signal)

Figure 5: An illustration of dToF

Understanding computer and machine vision

44 45
we get technical

real-time depth estimation,
particularly in high-resolution
applications

	■ Occlusion and edge bleeding
effects introduce depth
inaccuracies

Time-of-Flight (ToF) sensors

Time-of-Flight (ToF) depth sensing
is based on measuring the time
delay or phase shift of emitted
infrared (IR) light as it reflects off
a target and returns to the sensor.
This enables accurate distance
measurements, generating real-
time depth maps with minimal
computational complexity. ToF
systems are implemented in two
main architectures:

Direct Time-of-Flight (dToF)
measures the absolute travel
time of individual photons using
Single-Photon Avalanche Diodes
(SPADs) or Silicon Photomultipliers

(SiPMs). This method is well-
suited for applications requiring
long-range, high-precision depth
measurements, such as automotive
LiDAR and industrial metrology.

Indirect Time-of-Flight (iToF) emits
modulated infrared signals and
measures the phase shift between
emitted and received light using
CMOS-based image sensors
with demodulation pixels. iToF
is commonly used in consumer
electronics and AR/VR applications
due to its compact design and
lower power consumption.

ToF sensor performance can be
influenced through several system-
level design factors to improve
precision, coverage, or varying
lighting conditions. This can be
achieved by altering modulation
frequencies/wavelengths, emitter
technology, optical designs,
or controlling calibration and
exposure.

Technical advantages:
	■ Provides dense, real-time

depth maps with minimal
computational overhead

	■ Effective in low-light and
textureless environments

	■ Well-suited for gesture
recognition, AR/VR applications,
and industrial process
monitoring

Challenges:
	■ Depth precision decreases

with distance due to multi-path
interference

	■ Susceptible to errors in highly
reflective or absorptive surfaces

	■ Requires precise calibration of
illumination and sensor exposure
times to avoid artifacts

LiDAR (Light Detection and
Ranging)
LiDAR uses pulsed laser beams
to generate high-resolution 3D
point clouds of an environment.
By measuring the time delay
between pulse emission and
reception, LiDAR systems construct
depth maps with sub-centimeter
accuracy. LiDAR can operate in 1D
(single-line scanning), 2D (rotating
plane scanning), or 3D (solid-state
or MEMS-based scanning).

LiDAR calculates distance, d, via
the following formula:

Here, c is the speed of light, t is
the total time for the laser pulse to
travel to the object and back, and

The choice of technology depends on
environmental constraints, computational
resources, and the precision required for
machine vision applications.

Figure 6: An illustration of iToF provide high sensitivity for
detecting weak return signals
but introduce additional noise,
requiring sophisticated filtering and
amplification techniques. Single-
photon avalanche diodes (SPADs)
on the other hand enabled time-
correlated single-photon counting,
offering extreme sensitivity and
superior performance in low-light
conditions.

The effectiveness of these
receivers directly impacts point
cloud density and resolution,
which define the granularity of
the captured 3D environment.
The angular resolution, which is
typically between 0.1 and 1 degree,
determines the level of detail in the
scan and affects object detection
accuracy. Scan rates, ranging from
10 to 100Hz, influence real-time
application viability, with higher
rates improving responsiveness
in dynamic environments. High-
end LiDAR systems can generate
millions of points per second,
allowing for precise environmental

Phase difference

Emitted light (periodic signal)

Reflected light

Emitted light

Light-emitting
element

Light-receiving
element

Target
object

Laser Light emitted pulse

Reception of the laser pulse

Laser pulse travelling at speed of light

ObjectLidar

Figure 7: Basic
LiDAR principle
visualized

Figure 8: Visualization of how LiDAR works on a vehicle for object detection and recognition.

Understanding computer and machine vision

the division by 2 accounts for the
round trip.

LiDAR systems commonly operate
at 905nm or 1,550nm. The 905nm
wavelength is cost-effective
but has a shorter range and is
subject to eye safety limitations. In
contrast, 1,550nm LiDAR is safer
for higher power emissions and can
achieve longer ranges but requires
more expensive components such
as InGaAs detectors.

Various beam steering methods
can be used to direct the laser
beam for different outcomes or use
cases. These include:

	■ Mechanical scanning: uses
rotating mirrors to direct the
laser beam over the field of
view, common in traditional
automotive and mapping LiDAR

	■ MEMS-based scanning: employs
micro-electromechanical mirrors
to reduce size and cost while
maintaining scanning capability

	■ Solid-state (Flash LiDAR):
illuminates the entire scene at
once, eliminating the need for
moving parts and enhancing
robustness

	■ Optical Phased Arrays (OPAs):
utilizes interference patterns
to steer beams electronically,
enabling ultra-compact, solid-
state implementations without
mechanical components

LiDAR systems also rely on
advanced receiver technologies
to capture returning laser pulses
accurately and generate high-
fidelity depth maps. For instance,
avalanche photodiodes (APDs)

46 47
we get technical

reconstruction which is crucial for
applications such as autonomous
navigation, mapping, and industrial
automation.

Technical advantages:
	■ Superior range (tens to hundreds

of meters) and depth accuracy
	■ Robust performance in diverse

lighting conditions, including
direct sunlight

	■ Essential for applications
like autonomous vehicle
perception, aerial mapping, and
infrastructure inspection

Challenges:
	■ High cost and power

consumption compared to other
depth sensing methods

	■ Requires substantial data
processing for real-time
operation, often necessitating
hardware acceleration (e.g.,
FPGAs, GPUs)

	■ Performance can be affected
by rain, fog, or highly specular
surfaces

Each depth sensing topology
offers distinct advantages and
limitations depending on the
application. Structured light
excels in short-range precision,
stereo vision provides passive
depth estimation, ToF balances
real-time performance with
moderate range, and LiDAR leads
in long-range accuracy. The
choice of technology depends
on environmental constraints,
computational resources, and the
precision required for machine
vision applications.

Orbbec cameras
implementing mainstream
3D technologies

	■ Monocular Structured Light:
Astra Mini Pro, Astra 2

	■ Stereo vision structured light
camera: Gemini 330 series,
Gemini 2 series (Gemini 2,
Gemini 2 L, Gemini 2 XL)

	■ TOF: Femto series (Femto Bolt,
Femto Mega, Femto Mega I)

Orbbec Gemini 330 series stereo
vision 3D cameras integrate two
infrared imaging modules, a laser
diode module (LDM) for infrared
speckle pattern projection, an RGB
imaging module, a depth engine
processor (MX6800), an image
signal processor (ISP), and an
inertial measurement unit (IMU).
The LDM emits infrared speckle
patterns onto the target scene,
while the dual infrared imaging
modules capture synchronized
images from distinct viewpoints.
The depth engine processes these
images using advanced depth
reconstruction algorithms to
generate a high-precision depth
map of the scene.

Typical applications:
	■ Preferred cameras for robotic

arm applications

1.	Stereo vision cameras
	■ Objects in motion,

require good accuracy at
short distances, Varied/
un-controlled lighting
conditions, Multiple
cameras with shared FoV

	■ Example: bin-picking
2.	ToF cameras

	■ Stationary objects,
require high-fidelity edge
definition, Require good
accuracy at medium-to-
long distances, Controlled
lighting conditions

	■ Example: palletization/de-
palletization

3.	Structured light cameras
	■ Stationary objects, require

highest accuracy at short-
to-medium distances,
controlled lighting
conditions

	■ Example: defect detection
	■ Preferred depth cameras for

AMR applications
1.	Stereo vision cameras

	■ Require stable depth maps
while in motion, operate in
varied lighting conditions,
often require multiple
cameras for 360° view,
multi-camera interference

	■ Example: pallet/tote-
moving, forklifts, cleaning,

delivery
	■ Preferred depth cameras for

humanoids
1.	Stereo vision cameras

	■ Stable depth perception,
adaptability to varied
lighting conditions, multi-
camera coordination and
360° view, low interference
and high compatibility

2.	ToF cameras
	■ High precision depth

sensing, real-time
performance, adaptability
to complex lighting, multi-
target detection and
tracking

	■ Others
1.	Structured light cameras:

	■ Facial recognition (e.g.
facial payment kiosks)

	■ 3D scanning (e.g. body part
scanning, object scanning)

Intel RealSense depth and
tracking cameras

Intel RealSense cameras have
become a go-to product within
the machine and computer vision
space, offering engineers high-
precision depth perception and
positional tracking. These solutions
are widely adopted in robotics,

autonomous navigation, industrial
automation, medical imaging, and
augmented/virtual reality (AR/VR)
due to their compact form factor,
real-time processing capabilities,
and extensive software support.

Intel RealSense Depth Cameras
leverage a combination of
stereo vision, active infrared (IR)
projection, and structured light to
compute high-fidelity depth maps
in real time. The stereo IR cameras
capture left and right image pairs,
and an onboard Intel Depth Sensing
ASIC computes depth using
disparity matching algorithms.
The active IR pattern projector
improves accuracy in low-texture
environments by adding depth cues
where natural visual features are
sparse.

Intel’s D400 series are a popular
choice, for example:

	■ D415 – features a rolling shutter
with a narrow field of view, suited
for applications requiring precise
object scanning

	■ D421 - module brings advanced
depth-sensing technology to a
wider audience at an affordable
price point

	■ D435/D435i – utilizes a global
shutter, making it ideal for fast-
moving objects in robotics and
automation

	■ D455 – offers an extended
baseline (95mm), improving
depth accuracy for mid-range
applications.

These cameras see use anywhere
from autonomous mobile robots

(AMRs) and drones, 3D scanning
and volumetric measurements,
medical imaging, or even biometric
security measures.

Interfaces in computer and
machine vision

The efficiency and scalability of
machine vision systems depend
on the interfaces used to transfer
images data between cameras,
processing units, and control
systems. Different applications
require specific connectivity
solutions, balancing bandwidth,
latency, power efficiency, and
environmental robustness. The
most widely used interfaces in
machine/computer vision are
GMSL/FAKRA, USB/MIPI CSI,
Ethernet, and Power over Ethernet
(PoE).

GMSL/FAKRA
Gigabit Multimedia Serial Link
(GMSL) is a high-speed serial
interface designed for automotive
and industrial vision applications.
It supports long-distance, high-
bandwidth video transmission
with low latency, making it ideal
for autonomous vehicles, ADAS
(Advanced Driver Assistance
Systems), and robotic vision. GMSL
operates over FAKRA connectors,
which provide rugged, shielded
connections suitable for harsh
environments.

GMSL can achieve data rates
of up to 6Gbps per link while
maintaining low latency, ensuring

Figure 9: Intel RealSense D435f depth
camera Credit: Intel Corporation

Structured light excels in short-range
precision, stereo vision provides passive
depth estimation, ToF balances real-time
performance with moderate range, and LiDAR
leads in long-range accuracy.

Understanding computer and machine vision

https://www.digikey.com/en/products/filter/camera-sensors/828?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCsIAugL7X4KSnrYCGANgM7YB2XV1QA
https://www.digikey.com/en/product-highlight/i/intel-realsense/depth-camera-module-d421

48 49
we get technical

minimal delays in time-sensitive
applications such as autonomous
navigation. Forward error
correction (FEC) mechanisms
help mitigate signal degradation
over long distances, making it
highly reliable in electrically noisy
environments. Unlike Ethernet-
based solutions, GMSL is optimized
for uncompressed, real-time data
streaming, reducing processing
overhead on receiving hardware.

USB (USB3 Vision and MIPI CSI)
USB remains a dominant interface
for machine vision, particularly in
research, laboratory automation,
and consumer applications. USB3
Vision, based on USB 3.0, provides
high-speed data transfer up to
5Gbps (with USB 3.1 supporting
up to 10Gbps), making it well-
suited for high-resolution cameras
requiring minimal latency. The plug-
and-play nature of USB simplifies
deployment in industrial inspection,
microscopy, and AI-driven vision
systems. However, USB’s cable
length limitation (typically under
five meters) can be a constraint in
larger-scale deployments.

For embedded vision applications,
MIPI CSI (Camera Serial Interface)
is the preferred standard, enabling
direct connection between
cameras and system-on-chip (SoC)
processors. MIPI CSI supports
scalable data rates, typically up
to 2.5Gbps per lane, with multiple
lanes available for increased
bandwidth. It is common in

smartphones, drones, and edge
AI devices due to its low power
consumption and efficient data
transfer. Unlike USB, MIPI CSI is
optimized for continuous, high-
speed image capture without
requiring a host controller.

Ethernet and Power over
Ethernet (PoE)
Ethernet is a key interface for
networked and industrial vision
systems, offering long-distance,
high-bandwidth connectivity. GigE
Vision (Gigabit Ethernet Vision) is
an industry standard that enables
cameras to transmit uncompressed
images over Ethernet networks at
speeds of up to 1Gbps, with 10GigE
Vision extending this to 10Gbps.
Unlike USB, Ethernet allows
for cable lengths of up to 100
meters, making it ideal for factory
automation, security, and remote
monitoring applications.

Power over Ethernet (PoE) further
enhances Ethernet-based vision
systems by delivering both power
and data over a single cable,
reducing cabling complexity.
Standard PoE (IEEE 802.3af)
provides up to 15.4W, while

PoE+ (IEEE 802.3at) supports
up to 25.5W, allowing for more
powerful image sensors and
onboard processing. However,
power constraints can limit
camera selection, particularly in
applications requiring intensive
onboard computing.

Bandwidth and latency
considerations

Each interface has trade-offs in
terms of bandwidth, latency, and
real-time performance:

	■ GMSL: up to 6Gbps per link,
ultra-low latency, ideal for real-
time applications

	■ USB3 Vision: 5Gbps (USB 3.0),
10Gbps (USB 3.1), moderate
latency due to host processing

	■ MIPI CSI: 2.5Gbps per lane,
very low power, efficient for
embedded systems

	■ GigE Vision: 1Gbps (standard),
10Gbps (10GigE Vision), higher
latency but long-distance
support

	■ PoE: offers flexibility, but power
constraints impact camera
capability

Synchronization and error
handling

In industrial automation and
robotics, precise synchronization
of multiple cameras is critical.
Ethernet-based vision systems
support Precision Time Protocol
(PTP) to enable hardware-level
synchronization. GMSL and MIPI
CSI provide deterministic data
transfer, ensuring consistent frame
timing. Error correction techniques,
such as checksums in Ethernet
and FEC in GMSL, enhance data
integrity across long transmission
distances.

The choice of interface depends on
the application’s requirements:

	■ Automotive: GMSL remains
dominant, but automotive
Ethernet is emerging for sensor
fusion

	■ Factory automation: GigE Vision
and PoE cameras are widely
used for scalability and ease of
deployment

	■ Embedded AI: MIPI CSI is
preferred in Edge devices where
power efficiency and direct SoC
integration are priorities

	■ High-speed imaging: USB3
Vision and 10GigE Vision are
favored for high-resolution, high-
frame-rate cameras

Selecting the right machine vision
interface involves balancing factors
such as bandwidth, latency, cable
length, power requirements, and
environmental conditions. GMSL

excels in real-time, high-speed
applications, while Ethernet-based
solutions provide flexibility and
scalability. USB3 Vision offers
simplicity and high bandwidth for
close-range applications, whereas
MIPI CSI is ideal for embedded
systems. Understanding these
trade-offs allows engineers
to optimize vision systems for
specific industrial and research
applications.

Conclusion: the future of
computer and machine
vision

Machine and computer vision
have evolved from early rule-based
image processing to AI-powered,
real-time decision-making systems
that now underpin automation
across industries. The integration
of deep learning, Edge computing,
and advanced sensing technologies
has pushed machine vision beyond
traditional applications, enabling
more sophisticated perception and
analysis at unprecedented speeds
and accuracy.

Looking ahead, the next phase

of computer and machine
vision will focus on optimizing
efficiency, adaptability, and real-
time processing. Engineers will
play a critical role in advancing
neuromorphic vision systems,
enhancing federated learning
for distributed AI models, and
developing low-power, high-
performance vision architectures.
Improving interoperability between
vision systems and automation
platforms will also be crucial, as
industries demand more seamless
integration between AI-driven vision
and broader industrial ecosystems.

As the technology continues
to mature, the engineering
challenges will shift from
feasibility to refinement –
reducing computational overhead,
improving adaptability in dynamic
environments, and ensuring robust
performance across diverse
conditions. The future of machine
vision is not just about seeing
but understanding, adapting, and
making intelligent decisions in
real-time, paving the way for a new
generation of autonomous and AI-
driven systems.

SoCGMSL
Deserializer

Figure 10: Typical
GMSL cameras to host
connection

Machine and computer vision have evolved
from early rule-based image processing to
AI-powered, real-time decision-making
systems that now underpin automation
across industries.

Understanding computer and machine vision

50 51
we get technical

Machine vision is a collection of
technologies that give automated
equipment (industrial or otherwise)
high-level understanding of the
immediate environment from
images. Without machine-vision
software, digital images would
be nothing more than simple
unconnected pixel collections
having various color values and
tone intensities to such equipment.
Machine vision lets computers
(typically connected to machine
controls) detect edges and shapes
within such images to in turn let
higher-level processing routines
identify predefined objects of
interest. Images in this sense aren’t
necessarily limited to photographic

images in the visible spectrum; they
can also include images obtained
using infrared, laser, X-ray, and
ultrasound signals.

One fairly common machine-vision
application in industrial settings is
to identify a specific part in a bin
containing a randomly arranged
(jumbled) mix of parts. Here,
machine vision can help pick-
and-place robots automatically
pick up the right part. Of course,
recognizing such parts with
imaging feedback would be
relatively straightforward if they
were all neatly arranged and
oriented the same way on a tray.
However, robust machine vision
algorithms can recognize objects

at different distances from the
camera (and therefore appearing
as different sizes at the imaging
sensor) as well as in different
orientations.

The most sophisticated machine
vision systems have enabled new
and emerging designs far more
sophisticated than bin picking –
perhaps no more recognizable
than in autonomous vehicles, for
example.

Technologies related to
machine vision

The term machine vision is
sometimes reserved to reference

How machine vision is
advancing automation now
Written by Jody Muelaner

more established and efficient
mathematical methods of
extracting information from
images. In contrast, the term
computer vision typically describes
more modern and computationally
demanding systems – including
black-box approaches using
machine learning or artificial
intelligence (AI). However, machine
vision can also serve as a catch-all
term encompassing all methods of
high-level information extraction
from images; in this context,
computer vision describes its
underlying theories of operation.

Technologies to extract high-level
meaning from images abound.
Within the research community,
such technologies are often
considered as distinct from
machine vision. However, in a
practical sense, all are different
ways of achieving machine vision …
and in many cases, they overlap.

Digital image processing is a

form of digital-signal processing
involving image enhancement,
restoration, encoding, and
compression. Advantages over
analog image processing include
minimized noise and distortion
as well as the availability of far
more algorithms. One early image-
enhancement use was correction
of the first close-range images
of the lunar surface. This used
photogrammetric mapping as well
as noise filters and corrections for
geometric distortions arising from
the imaging camera’s alignment
with the lunar surface.

Digital image enhancement often
involves increasing contrast
and may also make geometric
corrections for viewing angle and
lens distortion. Compression is
typically achieved by approximating
a complex signal to a combination
of cosine functions – a type of
Fourier transform known as a
discrete cosine transform or DCT.
The JPEG file format is the most

popular application of DCT. Image
restoration may also use Fourier
transforms to remove noise and
blurring.

Photogrammetry employs some
kind of feature identification
to extract measurements from
images. These measurements
can include 3D information when
multiple images of the same
scene have been obtained from
different positions. The simplest
photogrammetry systems measure
the distance between two points
in an image employing a scale.
Including a known scale reference
in the image is normally required
for this purpose.

Feature detection lets computers
identify edges and corners
or points in an image. This
is a required first step for
photogrammetry as well as the
identification of objects and
motion. Blob detection can
identify regions with edges that

Figure 1: Use of machine vision for more sophisticated robotics applications is on the rise.
 Image source: John6863373 | Dreamstime.com

Figure 2: Machine vision gives systems (industrial or otherwise) high-level
understanding of an environment setting from images. Image source: Wikimedia

Figure 3: The DLPC350 integrated
circuit (IC) controller provides input and
output trigger signals for synchronizing
displayed patterns with a camera. It
works with digital micromirror devices
(DMDs) designed to impart 3D machine
vision to industrial, medical, and
security equipment. In fact, applications
include 3D scanning as well as
metrology systems. Image source:
Texas Instruments

52 53
we get technical

are too smooth for edge or corner
detection.

Pattern recognition is used
to identify specific objects. At
its simplest, this might mean
looking for a specific well-defined
mechanical part on a conveyor.

3D reconstruction determines
the 3D form of objects from 2D
images. It can be achieved by
photogrammetric methods in which
the height of common features
(identified in images from different
observation points) are determined
by triangulation. 3D reconstruction
is also possible using a single 2D
image; here, software interprets
(among other things) the geometric
relationships between edges or
regions of shading.

A human can mentally reconstruct
a cube from a simple line-art
representation with ease – and
a sphere from a shaded circle.
Shading gives indication of the
surfaces’ slopes. However, the
process of such deduction is more
complicated than it seems because
shading is a one-dimensional
parameter while slope occurs in
two dimensions. This can lead to
ambiguities – a fact demonstrated
by art depicting physically
impossible objects.

How machine-vision tasks
are ordered

Many machine-vision systems
progressively combine the above
techniques by starting with

low-level operations and then
advancing one by one to higher-
level operations. At the lowest level,
all of an image’s pixels are held as
high-bandwidth data. Then each
operation in the sequence identifies
image features and represents
information of interest with
relatively small amounts of data.

The low-level operations of image
enhancement and restoration come
first, followed by feature detection.
Where multiple sensors are used,
low-level operations may therefore
be carried out by distributed
processes dedicated to individual
sensors. Once features in individual
images are detected, higher-level
photogrammetric measurements
can occur – as can any object
identification or other tasks relying
on the combined data from multiple
images and sensors.

Direct computations and
learning algorithms

A direct computation in the
context of machine vision is a set
of mathematical functions that
are manually defined by a human
programmer. These accept inputs
such as image pixel values to yield
outputs such as an object’s edges’
coordinates. In contrast, learning
algorithms aren’t directly written
by humans but are instead trained
via example datasets associating
inputs with desired outputs. They,
therefore, function as black boxes.
Most all such machine learning
now employs deep learning based
on artificial neural networks to
make its calculations.

Simple machine learning for
industrial applications is often more
reliable and less computationally
demanding if based on direct
computation. Of course, there are
limits to what can be achieved with

direct computation. For example,
it could never hope to execute
the advanced pattern recognition
required to identify individuals by
their faces, especially not from
a video feed of a crowded public
space. In contrast, machine
learning deftly handles such
applications. No wonder then that
machine learning is increasingly
being deployed for lower-level
machine-vision operations
including image enhancement,
restoration, and feature detection.

Improving teaching
approaches (not algorithms)

The maturing of deep-learning
technology has made apparent
that it’s not learning algorithms
themselves needing improvement
but the way they’re trained. One
such improved training routine
is called data-centric computer
vision. Here, the deep-learning
system accepts very large training
sets made of thousands, millions,
or even billions of images – and
then stores resultant information
its algorithms extract from each
image. The algorithms effectively
learn by practicing worked
examples and then referring to an
‘answer book’ to verify whether they
arrived at the right values.

Figure 4: 3D scanners capture 2D images of an object to create a 3D model of it. In
some cases, the digital models are then employed to 3D print copies. Image source:
Shenzhen Creality 3D Technology Co.

An old story about the early days of
digital pattern recognition serves as
a cautionary tale. The U.S. military
intended to use machine vision for
target recognition, and defense-
contractor demonstrations reliably
identified U.S.-made and Russian-
made tanks. Various tanks were all
correctly differentiated from the
supplier’s aerial photographs, one
after the other. But when tested
again with the Pentagon’s own
library of pictures, the system kept
giving wrong answers. The problem
was that the defense contractor’s
images all depicted U.S. tanks
in deserts and Russian tanks in
green fields. Far from recognizing
different tanks, the system was
instead recognizing different-
colored backgrounds. The moral?
Learning algorithms need to be
presented with carefully curated
training data to be useful.

Conclusion: vision for
robotic workcell safety

Machine vision is no longer a
niche technology. It’s seeing the
most increased deployment in
industrial applications. Here, the
most dramatic development is how
machine vision now complements
industrial-plant safety systems
that sound alarms or issue audio

announcements when plant
personnel enter a working zone
without a hard hat, mask, or other
correct protective equipment.
Machine vision can also complete
systems that announce when
mobile machinery such as forklifts
get too close to people.

These and similar machine-vision
systems can sometimes replace
hard guarding around industrial
robots to enable more efficient
operations. They can also replace
or enhance safety systems based
on light guards that simply stop
machinery if a plant worker
enters a workcell. When machine
vision monitors the factory floor
surrounding the workcell, it is
possible for robots in such cells
to gradually slow down as people
approach.

As the designs of industrial
settings evolve to accommodate
collaborative robots and other
workcell equipment that are
safe for plant personnel to move
around (even while that equipment
operates) these and other systems
based on machine vision will
become a much more common
part of factory processes.

Figure 6: Image sensors from the iVu
series can identify workpieces by type,
size, location, orientation, and coloring.
The machine-vision components can
accept configuration and monitoring
an integrated screen, remote HMI, or
PC. Camera, controller, lens, and light
are all pre-integrated. Image source:
Banner Engineering Corp.

Figure 5:
Computerized
determination of
a workpiece’s 3D
form from a 2D
image is fraught
with challenges.

How machine vision is advancing automation now

54

250207_HIC_ELECSPEC_EU.indd 1250207_HIC_ELECSPEC_EU.indd 1 2/3/25 5:39 PM2/3/25 5:39 PM

