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Editor’s note

Welcome to the DigiKey eMagazine Volume 18 
– Edge AI. 

As technology continues to evolve at a rapid pace, we’re 
constantly exploring innovative solutions that shape the 
future of industries from IoT to AI and machine vision. In 
this issue, we’ve curated a selection of articles that offer 
valuable insights into these game-changing technologies 
and how they’re transforming the way we approach 
engineering challenges.

In our first feature, we delve into predictive maintenance 
through AI-powered data acquisition, highlighting how 
current sensors can play a pivotal role in optimizing 
efficiency and minimizing downtime. Staying on the topic 
of AI, we also explore tinyML at the Edge – examining three 
unique use cases that demonstrate how machine learning 
can be deployed directly within resource-constrained 
devices for smarter, more efficient systems.

For those venturing into the world of multicore 
microcontrollers, we break down why they’re essential for 
IoT devices at the Edge and provide practical advice on 
getting started with these powerful, parallel-processing 
units. We also take a deep dive into the crucial, yet often 
overlooked, aspect of data preparation in machine learning 
– offering clarity on why clean, structured data is the 
foundation of successful ML projects.

On the hardware front, we explore how to design and 
deploy smart machine vision systems rapidly, empowering 
you with the tools needed to integrate visual intelligence 
into applications across industries. And lastly, we turn our 
focus to GMSL cameras, which have been road-tested 
and are driving innovation into new markets, presenting 
opportunities that are redefining how we capture and 
process visual data.

This issue is packed with cutting-edge information and 
practical tips to keep you ahead of the curve in the world 
of technology. We hope these articles inspire fresh 
ideas and new possibilities as you navigate the exciting 
developments in your field.
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The Internet of Things (IoT) has 
brought about tremendous interest 
in using artificial intelligence 
(AI) and machine learning (ML) 
technologies to monitor the health 
of machines including motors, 
generators, and pumps, and to alert 
maintenance engineers as to any 
looming problems. One difficulty 
for the designers of AI/ML systems 
looking to implement this type of 
predictive maintenance is selecting 
the best sensor for the application. 
Another issue is that relatively few 
designers have any experience 
creating AI/ML applications.

To obtain the data for the AI/ML 
system to act upon, designers often 
opt for sophisticated sensors like 
three-axis accelerometers coupled 
with high-powered microcontroller 
development platforms. In many 
cases, however, it’s possible to 
achieve the desired goal using 
a simple current sensor in 
conjunction with a more modest 
and less costly microcontroller 
development platform.

This article introduces the idea of 
using a current sense transformer 
to obtain the data required to 
simply and cost-effectively 
implement AI/ML applications. 
Using a low-cost Arduino IoT 
microcontroller development 
platform and a current sense 
transformer from CR Magnetics, 
the article also presents a simple 
circuit that employs the current 
sensor to monitor the health of a 
vacuum pump with an integrated 
filter, alerting the user when the 
filter has become clogged. Finally, 
the article presents an overview 
of the process of creating the 
associated AI/ML application.

Simple sensors for AI/ML

In order to acquire the data for 
an AI/ML application to act 
upon, designers often opt for 
sophisticated sensors like three-
axis accelerometers; but this 
type of sensor can generate vast 
amounts of data that are difficult 
to manipulate and understand. To 

Use a current sensor to 
efficiently acquire data for 
predictive maintenance 
with AI Written by Clive ‘Max’ Maxfield

or greater current values). All 
members of the family support a 
frequency range of 20 hertz (Hz) 
to 1 kilohertz (kHz), covering the 
majority of industrial applications. 
Also, all CR31xx devices employ 
a hinge and locking snap that 
allows them to be attached without 
interrupting the current carrying 
wire.

The Arduino Nano 33 IoT

One example of a low-cost 
microcontroller development 
platform suitable for prototyping 
simple AI/ML applications is the 
ABX00032 Arduino Nano 33 IoT 
from Arduino (Figure 2). Featuring 
an Arm Cortex-M0+ 32-bit 
ATSAMD21G18A processor running 
at 48 megahertz (MHz) with 256 
kilobytes (Kbytes) of flash memory 
and 32 Kbytes of SRAM, the 

Arduino Nano 33 IoT also comes 
equipped with both Wi-Fi and 
Bluetooth connectivity.

Data capture circuit

The circuit used for the purpose 
of this discussion is shown below 
in Figure 3. The CR3111-3000 
transforms the measured current 
driving the machine into a much 
smaller one using a 1000:1 ratio.

Resistor R3, which is connected 
across the CR3111-3000’s 
secondary (output) coil, acts as 
a burden resistor, producing an 
output voltage proportional to the 
resistor value, based on the amount 
of current flowing through it.

Resistors R1 and R2 act as a 
voltage divider, forming a ‘virtual 
ground’ with a value of 1.65 volts. 
This allows the values from the 
CR111-3000 to swing positive and 
negative and still not hit a rail, since 
the microcontroller cannot accept 
negative voltages. Capacitor C1 
forms part of an RC noise filter that 
reduces noise from the 3.3 volt 

supply and nearby stray fields from 
getting into the measurements, 
thereby helping the voltage divider 
act as a better ground.

A vacuum pump with an integrated 
filter was used to provide a 
demonstration test bench. For 
the purposes of this prototype, 
Tripp Lite’s P006-001 1 foot (ft.) 
extension power cord was inserted 
between the power supply and the 
vacuum pump (Figure 4).

The prototype circuit was 

Figure 2: The Arduino ABX00032 Nano 
33 IoT provides a low-cost platform 
upon which to build AI/ML applications 
to enhance existing devices (and create 
new ones) to be part of the IoT. Image 
source: Arduino

Figure 3: The circuit used to convert the output 
from the CR3111-3000 into a form that can be used 
by the Arduino Nano 33 IoT with its 3.3 volt inputs. 
Image source: Max Maxfield

Figure 1: The CR3111-3000 split-core 
current sense transformer provides 
a low-cost, easy-to-use current 
detector that can be employed as the 
primary sensor in an AI/ML predictive 
maintenance application. Image source: 
CR Magnetics

4

avoid this complexity, it’s worth 
remembering that everything is 
interrelated. Just as an injury to one 
part of a person’s body can cause 
referred pain that is perceived 
elsewhere in the body, a failing 
bearing in a motor can modify the 
current being used to drive that 
motor. Similarly, in addition to 
causing overheating, a blocked air 
intake can also modify the current 
being used to drive the motor.

Consequently, monitoring one 
aspect of a machine’s operation 
may cast light on other facets of its 
workings. As a result, it’s possible 
to achieve the desired monitoring 
and sensing goal by observing 
a related parameter using a 
substantially simpler sensor, such 
as the low-cost, small-size, CR3111-
3000 split-core current sense 
transformer from CR Magnetics 
(Figure 1).

The CR3111-3000 can be used to 
detect current up to 100 amperes 
(A) (other members of the CR31xx 
family can be employed for lessor 

https://www.digikey.co.uk/en/supplier-centers/arduino
https://www.digikey.co.uk/en/supplier-centers/cr-magnetics
https://www.digikey.co.uk/en/products/detail/arduino/ABX00032/1050-ABX00032-ND/10239967
https://www.digikey.co.uk/en/supplier-centers/arm
https://www.digikey.co.uk/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcoLQdIDGUBmBDANgZwKYBoQB7KAbXAFYAGEAXQF8CYAmKUZSAFwCcBXfI0iACctOgxAtIZAIIAVAMrSAsgBEmYAOJgAHNNFA
https://www.digikey.co.uk/en/supplier-centers/tripp-lite
https://www.digikey.co.uk/en/products/detail/cr-magnetics-inc/CR3111-3000/582-1178-ND/4383872
https://www.digikey.co.uk/en/products/detail/cr-magnetics-inc/CR3111-3000/582-1178-ND/4383872
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implemented using components 
from the author’s treasure chest 
of spare parts (Figure 5). Readily 
available equivalents would be as 
follows:

	■ Adafruit 64 breadboard
	■ Twin Industries TW-E012-000 

pre-formed wire kit for use with 
breadboards

	■ Stackpole Electronics 
RNMF14FTC150R 150 ohm (Ω) 
±1% 0.25 watt (W) through-hole 
resistor

	■ Stackpole Electronics’ 
RNF14FTD10K0 10 kiloohm (kΩ) 
±1% 0.25 W through-hole resistor

	■ KEMET ESK106M063AC3FA 
10 microfarad (µF) 63 volt 
aluminum electrolytic capacitor

With regard to the leads from the 
current sensor, 1931 22-28 AWG 
crimp pins from Pololu Corp. were 
crimped on the ends. These pins 
were subsequently inserted into 
a 1904 5 x 1 black rectangular 
housing with a 0.1 inch (in.) (2.54 
millimeter (mm)) pitch, also from 
Pololu.

Creating the AI/ML 
application

In order to create the AI/ML 
application, a free trial version of 
NanoEdge AI Studio was accessed 
from Cartesium’s website (see also, 
‘Easily Bring Artificial Intelligence to 
Any Industrial System’).

When NanoEdge AI Studio is 
launched, the user is invited to 
create and name a new project. 
The user is then queried as to the 

the beginning and end of the run), 
and then loaded into NanoEdge AI 
Studio.

The good data was collected with 
the vacuum pump running in its 
normal mode. In order to gather the 
bad data, the pump’s air filter was 
obstructed with a disk of paper.

Using the good and bad data, 
NanoEdge AI Studio generates the 
best AI/ML library solution out of 
500 million possible combinations. 
Its ongoing progress is displayed 
in a variety of different ways, 
including a scatter chart showing 
how well the normal signals (blue) 
are being distinguished from the 
abnormal signals (red) with regard 
to a threshold value, which was set 
to 90% in this example (Figure 7).

The early models typically find it 
difficult to distinguish 
between the normal 
and abnormal data, 
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but the system evaluates different 
combinations of algorithmic 
elements, iterating on increasingly 
accurate solutions. In this case, the 
process was halted after 58,252 
libraries had been evaluated. The 
resulting library (model) was only 2 
Kbytes in size.

It’s important to note that, at this 
stage, the model is in its untrained 
form. Many different factors 
may affect the ways in which the 
machines run. For example, two 
seemingly identical vacuum pumps 
could be mounted in different 
locations – for example, one on 
a concrete slab and the other on 
a suspended floor. Or one of the 
machines could be located in a 
hot, humid environment, while 
the other may be in a cold, dry 
setting. Furthermore, one could 
be connected to long lengths of 
metal pipe, while the other could be 
attached to short lengths of plastic 
pipe.

Thus, the next step is to incorporate 
the library into the applications 
running on the microcontrollers 
and sensors that are attached to 
machines that are deployed in the 

real world. The AI/ML models on 
the different machines will then 
train themselves using good data 
from these real-world installations. 
Following this self-training period, 
the AI/ML models can be left to 
monitor the health of the machines, 
looking for anomalies and trends, 
and reporting their findings and 
predictions to human supervisors.

Conclusion

Predictive maintenance using AI/
ML allows engineers to address 
problems before failures actually 

occur. However, the hardware 
used to implement the predictive 
maintenance system needs to 
be as simple and cost-effective 
as possible; also, designers need 
ready access to the required 
software to perform the analysis.

As shown, instead of opting for a 
complex multi-axis accelerometer 
and associated hardware, a 
simple, low-cost, small-size, 
CR3111-3000 split-core current 
transformer connected to a low-
cost microcontroller platform 
can perform the required sensing 
and data gathering. Coupled 
with advances in AI/ML tools 
and algorithms, it’s now possible 
for non-AI/ML experts to create 
sophisticated AI/ML models that 
can be deployed in a wide range 

of simple and complex 
sensing applications.

Figure 4: The 
1-foot extension 
power cord that 
was modified 
to accept the 
current sensor. 
Image source: 
Max Maxfield

Figure 6: Comparison of good/normal data (top) 
and bad/abnormal data (bottom). Apart from the 
differences in color, these don’t seem terribly 
different to the human eye, but an appropriate AI/ML 
model can distinguish between them. Image source: 
Max Maxfield

Figure 5: The prototype 
circuit was implemented 
using a small breadboard 
and components from 
the author’s treasure 
chest of spare parts. 
Image source: Max 
Maxfield

Figure 7: NanoEdge AI 
Studio evaluates up to 500 
million different AI/ML 
models to determine the 
optimal configuration for the 
normal and abnormal data. 
The initial models are rarely 
successful (top), but the tool 
automatically iterates on 
better and better solutions 
until the developer decides 
to call a halt (bottom). 
Image source: Max Maxfield

processor being used (an Arm 
Cortex-M0+ in the case of the 
Arduino Nano 33 IoT development 
board), the type(s) of sensor being 
used (a current sensor in this 
case), and the maximum amount 
of memory that is to be devoted to 
this AI/ML model (6 Kbytes was 
selected for this demonstration).

In order to create the AI/ML model, 
it is first necessary to capture 
representative samples of good 
and bad data (Figure 6). A simple 
Arduino sketch (program) was 
created to read values from the 
current sensor. This data can be 
directly loaded into NanoEdge 
AI Studio ‘on-the-fly’ from the 
microcontroller’s USB port. 
Alternatively, the data can be 
captured into a text file, edited 
(to remove spurious samples at 

https://www.digikey.co.uk/en/supplier-centers/adafruit
https://www.digikey.co.uk/en/products/detail/adafruit-industries-llc/64/1528-2182-ND/7241427
https://www.digikey.co.uk/en/supplier-centers/twin-industries
https://www.digikey.co.uk/en/products/detail/twin-industries/TW-E012-000/438-1049-ND/643115
https://www.digikey.co.uk/en/supplier-centers/stackpole-electronics
https://www.digikey.co.uk/en/products/detail/stackpole-electronics-inc/RNMF14FTC150R/S150CACT-ND/2617812
https://www.digikey.co.uk/en/products/detail/stackpole-electronics-inc/RNF14FTD10K0/RNF14FTD10K0CT-ND/1975090
https://www.digikey.co.uk/en/supplier-centers/kemet
https://www.digikey.co.uk/en/products/detail/kemet/ESK106M063AC3FA/399-18269-1-ND/9448287
https://www.digikey.co.uk/en/products/detail/pololu-corporation/1931/2183-1931-ND/10450365
https://www.digikey.co.uk/en/supplier-centers/pololu
https://www.digikey.co.uk/en/products/detail/pololu-corporation/1904/10450381
https://cartesiam.ai/download/
https://www.digikey.co.uk/en/blog/release-the-kraken-easily-bring-artificial-intelligence-to-any-industrial-system
https://www.digikey.co.uk/en/blog/release-the-kraken-easily-bring-artificial-intelligence-to-any-industrial-system
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Written by Jacob Beningo

3 uses for tinyML at  
the Edge

Machine learning (ML) has found 
its way into many areas of the 
Cloud and has been finding its 
way to the Edge on relatively 
powerful processors running 
Linux. The problem with traditional 
ML running on these systems is 
that their power profiles are too 
large for them to ‘disconnect’ and 
perform work as battery-operated 
Edge devices. The trend, and the 
future of ML at the Edge, is to use 
tinyML. TinyML aims to bring ML 
algorithms to resource-constrained 
devices, such as microcontrollers 
based on Arm Cortex-M 
processors.

In this blog, we will explore 
the most popular use cases 
for leveraging tinyML on 
microcontroller-based devices for 
use at the Edge.

Use case #1: keyword 
spotting

The first use case that tinyML is 
becoming popular for is keyword 
spotting. Keyword spotting is the 
ability of a device to recognize 
a keyword like ‘Hey Siri’, ‘Alexa’, 
‘Hello’, and so forth. Keyword 
spotting has many uses for edge 
devices. For example, one might 
want to use a low-power processor 
to watch for a keyword that will 
wake up a more powerful one. 
Another use case might be to 
control an embedded system or a 
robot. I’ve seen examples where a 
microcontroller was used to decode 
keywords like ‘forward’, ‘backward’, 
‘stop’, ‘right’, and ‘left’ to control a 
robot’s movement.

Keyword spotting with tinyML 

Figure 1: An input speech signal is digitally processed to create a spectrograph used 
to train an NN to detect keywords. Image source: Arm

I’ve seen examples where a microcontroller 
was used to decode keywords like ‘forward’, 
‘backward’, ‘stop’, ‘right’, and ‘left’ to control a 
robot’s movement.

https://www.digikey.co.uk/en/supplier-centers/arm
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is typically done by using a 
microphone to capture an input 
speech signal. The speech signal is 
recorded as a voltage over time and 
then converted into a spectrograph 
using digital signal processing. The 
spectrograph is a time series that 
is plotted against the frequency of 
the input signal. The spectrograph 
can be fed into a neural network 
(NN) to train the tinyML algorithm 
to recognize specific words. The 
process is shown in Figure 1.

A typical implementation would 
feed fixed windows of speech into 
the NN. The network would then 
evaluate the probability of one of 
the desired keywords having been 
spoken. For example, if someone 

said, ‘Yes’, the NN may report that it 
was 91% sure it was ‘Yes’, with a 2% 
chance it’s ‘No’, and a 1% chance 
it’s ‘On’.

The ability to use speech to 
control machines is 
a use case that many 
device manufacturers 
are carefully reviewing 
and hoping to enhance 
their devices within the 
coming years.

Use case #2: image 
recognition

The second use case that tinyML 
is finding its way into is image 
recognition. There are quite a 
few use cases for Edge devices 

that can perform image 
recognition. One use 
case that you might 
already be familiar 
with is the ability to 
detect whether there 
is a person, package, 

or nothing at your door. There 
are certainly plenty of other 
applications that range from 
monitoring old analog meters, 
detecting lawn health, or even bird 
counting.

Image recognition can seem like 
a complex field in which to get 
involved. However, there are several 
low-cost platforms available that 
can help developers get up and 
running. One of my favorites, and 
one that I use to get things done 
quickly, is the OpenMV.

OpenMV is an open machine vision 
platform that includes an integrated 
development environment (IDE), a 
library framework written in Python, 
and a camera module from Seeed 
Technology that helps developers 
create their machine vision 
applications (Figure 2).

The camera module is based on 
an STMicroelectronics STM32H7 
Cortex-M7 processor. The hardware 
can be expanded through its 
onboard expansion headers. It can 

3 uses for tinyML at the Edge

run off a battery and can even have 
the camera module swapped out. A 
good getting-started example that 
you may find interesting is how to 
use the CIFAR-10 dataset with the 
Arm CMSIS-NN library for image 
recognition. The example can be 
found on YouTube.

Use case #3: predictive 
maintenance

The last use case that we will 
discuss for tinyML is predictive 
maintenance. Predictive 
maintenance uses tools such 
as statistical analysis and ML to 
predict equipment state based on:

	■ Abnormality detection
	■ Classification algorithms
	■ Predictive models

For example, a factory might have a 
series of motors, fans, and robotic 
equipment that are used to produce 
a product. A company would want 
to minimize downtime to maximize 
the number of products that it can 
produce. If the equipment has 
sensors that can be interpreted 
using ML and the other techniques 
mentioned above, they can detect 
when the equipment is close to 
failure. Such a setup might look 
something like that shown in Figure 
3.

Connecting a smart sensor to 
a low-power microcontroller 
leveraging tinyML can result in a 
wide variety of useful applications. 
For example, HVAC units could 
be monitored, air filters checked, 
and irregular motor vibration could 

be detected, among many others. 
Preventive maintenance can 
become more organized, hopefully 
saving a company from costly 
reactive measures, ensuring a more 
optimized maintenance schedule.

Conclusion

TinyML has so many potential 
applications and use cases at 
the Edge. We’ve explored what’s 
popular now, but the use cases 
are nearly unlimited. TinyML can 
be used for gesture detection, 
guidance and control, and so much 
more. As Edge devices start to 
leverage the capabilities of tinyML, 
the question really becomes, what 
are you using tinyML for at the 
Edge?

Figure 3: The third popular use case for tinyML 
is smart sensors that are used for predictive 
maintenance. Image source: STMicroelectronics

Figure 2: The OpenMV camera module can be used for image recognition, and 
development can be done with a simple IDE using Python. Image source: Beningo 
Embedded Group

https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/102991322/11506484
https://www.digikey.co.uk/en/supplier-centers/seeed
https://www.digikey.co.uk/en/supplier-centers/seeed
https://www.digikey.co.uk/en/supplier-centers/stmicroelectronics
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H750VBT6TR/12337614
https://www.youtube.com/watch?v=PdWi_fvY9Og
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Why and how to get started with 
multicore microcontrollers for IoT 
devices at the Edge Written by Jacob Beningo

Developers of Internet of Things 
(IoT) devices at the Edge are 
being asked to incorporate 
an increasingly diverse and 
processing-intensive range of 
functions, from communications 
and sampling sensors to executing 
machine learning (ML) inferences. 
At the same time, developers 
are being asked to maintain or 
reduce power consumption. 
What’s needed is a more flexible 
architectural approach to a core 

element of their design – the 
microcontroller – that will allow 
developers to add features while 
achieving the optimal balance of 
performance, functionality, and 
power consumption.

This architectural approach 
comes in the form of multicore 
microcontrollers. These have, as 
their name suggests, multiple 
processing cores built into a single 
package. However, just throwing 
more cores at the problem won’t 

solve the issues. Developers need 
to understand the differences 
between symmetric and 
asymmetric multicore processors, 
how to approach functional 
partitioning, and how to program 
them effectively.

This article will introduce 
the concept of multicore 
microcontrollers before discussing 
how developers can leverage 
multicore microcontrollers 
to balance performance and 
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Figure 1: One paradigm for application design with multicore microcontrollers is 
to place the feature rich application components in one core and the real-time 
components in the second core. Image source: STMicroelectronics

Figure 3: The STM32H745I-DISCO board 
integrates a wide range of on-board 
sensors and memory capabilities that 
allow developers to test out the dual 
core microcontrollers running at 480 
MHz and 240 MHz. Image source: 
STMicroelectronics

Figure 2: Another paradigm for application design with multicore microcontrollers 
is to place the real-time application components in one core and all the security 
components in a second core. Image source: STMicroelectronics

playback. The second core, on the 
other hand, may do nothing more 
than act as a security processor. 
As such, the second core would 
handle storage of critical data like 
device and network keys, handle 
encryption, secure bootloader, and 
any other features deemed to fall 
within the secure software category 
(Figure 2).

There are other potential 
ways to parse up a multicore 
microcontrollers’ application space, 
but these two paradigms seem to 
be the most popular among IoT 
developers.

Selecting a multicore 
microcontroller 
development board

While multicore microcontrollers 
are becoming very popular, they 
are still not quite mainstream and 
selecting one can be tricky. For 
a developer looking to work with 

multicore microcontrollers, it’s best 
to select a development board that 
has the following characteristics:

	■ Includes an LCD for feature rich 
application exploration

	■ Expansion I/O
	■ Is low cost
	■ Has a well proven ecosystem 

behind it including example code, 
community forums, and access 
to knowledgeable FAEs

Let’s look at several examples 
from STMicroelectronics, starting 
with the STM32H745I-DISCO 
(Figure 3). This board is based on 
the STM32H745ZIT6 dual core 
microcontroller that comprises an 
Arm Cortex-M7 core running at 480 
megahertz (MHz) and a second 
Arm Cortex-M4 processor running 
at 240 MHz. The part includes a 
double-precision floating point unit 
and an L1 cache with 16 kilobytes 
(Kbytes) of data and 16 Kbytes of 
instruction cache. The discovery 
board is particularly interesting 
because it includes additional 
capabilities such as:

	■ An SAI audio codec
	■ A microelectromechanical 

systems (MEMS) microphone
	■ On-board QUAD SPI flash
	■ 4 gigabyte (Gbyte) eMMC
	■ Daughterboard 

expansion
	■ Ethernet
	■ Headers for audio 

and headphones

The development board 
has a lot of built-in 
capabilities that make 
it extremely easy to 

start experimenting with multicore 
microcontrollers and really scale up 
an application.

For developers who are looking 
for a development board that has 
additional capabilities and far more 
expansion I/O, the STM32H757I-
EVAL may be a better fit (Figure 4). 
The STM32H757I-EVAL includes 
additional capabilities over the 
evaluation board such as:

	■ 8 M x 32-bit SRAM
	■ 1 Gbit twin quad SPI NOR flash
	■ Embedded trace macrocell 

(ETM) for instruction tracing
	■ Potentiometer
	■ LEDs
	■ Buttons (tamper, joystick, wake-

up)

These extra capabilities, especially 
the I/O expansion, can be extremely 
useful to developers looking to get 
started.

Having looked at several 
development boards, the 
next step is to outline some 
recommendations for getting 
started with a multicore 
microcontroller application.

energy constraints. Several 
multicore microcontrollers from 
STMicroelectronics’ STM32H7 
line will be introduced by way 
of example. The article will also 
examine several use cases where 
developers can leverage multicore 
processing and split the workload 
between multiple cores.

Introduction to multicore 
microcontrollers

As mentioned, multicore 
microcontrollers have more than 
one processing core. There are 

two types of configurations which 
are often used, symmetric and 
asymmetric processing. Symmetric 
core configurations contain 
two or more of the exact same 
processing cores. For example, 
they might both be Arm Cortex-M4 
processors. Asymmetric cores on 
the other hand may contain an Arm 
Cortex-M7 processor and an Arm 
Cortex-M4 processor. They could 
also contain an Arm Cortex-M4 and 
an Arm Cortex-M0+ processor. The 
combinations are many and depend 
upon application and design 
requirements.

IoT developers are interested in 
multicore microcontrollers because 
they allow them to separate their 
application into multiple execution 
domains. Separate execution 
domains allow precise control of 
the application’s performance, 
features, and power needs. For 
example, one core may be used to 
interact with a user through a high-
resolution display and touch panel, 
while the second core is used 
manage the real-time requirements 
of the system such as controlling 
a motor, relays and sampling 
sensors.

There are many ways that a 
developer can partition their 
application, but the two biggest 
paradigms are to separate the 
application into:

	■ Feature rich/real-time
	■ Real-time/secure

In the first paradigm, feature rich/
real-time, the system is exactly like 
the one described in the paragraph 
above. Feature rich application 
components, such as the display, 
ML inferences, audio playback, and 
memory storage, among others, 
are all handled by one core. The 
second core then handles real-time 
functions such as motor control, 
sensing, and communication 
stacks (Figure 1).

The second paradigm separates 
the application into real-time and 
secure functionality. In the first 
core, the application may handle 
things like the display, memory 
access, and real-time audio 

Figure 4: The 
STM32H757I-EVAL 
board provides 
developers with lots of 
expansion space, easy 
access to peripherals, 
and an LCD screen 
to get started with 
multicore applications. 
Image source: 
STMicroelectronics

Why and how to get started with multicore microcontrollers for IoT devices at the Edge

https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H745I-DISCO/10244391?s=N4IgTCBcDaIMoBUCyBmMAJA7AFgKwEkBaAEXzgGEB5EAXQF8g
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H745ZIT6/10244385
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H757I-EVAL/10244390?s=N4IgTCBcDaIAQGUAqBZAzGAEgdgKzYEkBaAUQDUBBAGRAF0BfIA
https://www.digikey.co.uk/en/products/detail/stmicroelectronics/STM32H757I-EVAL/10244390?s=N4IgTCBcDaIAQGUAqBZAzGAEgdgKzYEkBaAUQDUBBAGRAF0BfIA
https://www.digikey.co.uk/en/supplier-centers/stmicroelectronics
https://www.digikey.co.uk/en/supplier-centers/arm
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How to start that first 
multicore application

No matter which of the two 
STM32H7 development boards is 
selected, there are two main tools 
that are needed to get started. 
The first is STMicroelectronics’ 
STM32CubeIDE, a free integrated 
development environment (IDE) 
that lets developers compile 
their application code and deploy 
it to the development board. 
STM32CubeIDE also provides 
the resources necessary to step 
through and debug an application, 
and is available for major operating 
systems including Windows, Linux 
and MacOS.

The second tool is 
STMicroelectronics’ STM32H7 
firmware package. This includes 
examples for the STM32H7 
development boards for:

	■ Multicore processing
	■ Using FreeRTOS
	■ Peripheral drivers
	■ FatFS (file system)

Developers will want to download 
the firmware application package 
and become familiar with the 
examples that are supported by 
the chosen development board. 

Specifically, there are two folders 
that developers will want to 
pay attention to. The first is the 
applications folder which has 
two examples that show how to 
use OpenAMP (Figure 5). These 
examples show how to transmit 
data back and forth between the 
microcontroller cores where one 
core sends data to the other core, 
which then retransmits it back 
to the first core. Both examples 
perform this in a different way. One 
is baremetal, without an operating 
system, while the other is with 
FreeRTOS.

The second set of examples 
demonstrates how to configure 
both cores with and without an 
RTOS (Figure 6). One example 
shows how to run FreeRTOS on 
each core, while the other shows 
how to use an RTOS on one core 
and run the second core baremetal. 
There are several other examples 

throughout the firmware package 
that demonstrate other capabilities, 
but these are good choices to get 
started.

Loading an example project will 
result in a developer seeing a 
project layout similar to that shown 
in Figure 7. As illustrated, the 
project is broken up into application 
code for each core. The build 
configuration can also be setup 
such that a developer is working 
with only one core at a time. This 
can be seen in Figure 7, through the 
grayed-out files.

A full description of the example 
code is beyond the scope of 
this article, but the reader can 
examine the readme.txt file 
that is associated with any of 
the examples to get a detailed 
description of how it works, and 
then examine the source code 
to see how the inter-processor 
communication (IPC) is actually 
performed.

Tips and tricks for 
working with multicore 
microcontrollers

Getting started with multicore 
microcontrollers is not difficult, but 
it does require that developers start 
to think about their application’s 
design a bit differently. Here 
are a few ‘tips and tricks’ for 
getting started with multicore 
microcontrollers:

	■ Carefully evaluate the application 
to determine which application 
domain separation makes the 
most sense. It is possible to mix 
domains on a single processor, 
but performance can be affected 
if not done carefully

	■ Take the time to explore the 
capabilities that are built into 
the OpenAMP framework and 

how those capabilities can be 
leveraged by the application

	■ Download the application 
examples for the STM32H7 
processors and run the multicore 
application examples for the 
selected development board. 
The H747 includes two: one for 
FreeRTOS and one for OpenAMP

	■ When debugging an application, 
don’t forget that there are now 
two cores running! Make sure 
to select the correct thread 
within the debug environment to 
examine its call history

	■ Leverage internal hardware 
resources, such as a hardware 
semaphore, to synchronize 
application execution on the 
cores

	■ Developers that start with a 
well-supported development 

For developers of IoT systems at the network 
Edge, multicore microcontrollers provide 
the ability to better match and balance 
functionality, performance, and power 
consumption.

 Figure 5: The STM32Cube_FW_H7 provides several examples that demonstrate how 
to get started with multicore processing using OpenAMP. Image source: Beningo 
Embedded Group

Figure 6: The STM32Cube_FW_H7 
provides several examples that 
demonstrate how to configure an 
operating system with multicore 
processors. Image source: Beningo 
Embedded Group

board and then follow these 
‘tips and tricks’ will find that they 
save quite a bit of time and grief 
when working with multicore 
microcontrollers for the first 
time.

Conclusion

For developers of IoT systems 
at the network Edge, multicore 
microcontrollers provide the 
ability to better match and balance 
functionality, performance, and 
power consumption per the 
application’s requirements. Such 
microcontrollers allow a developer 
to partition their application into 
domains such as feature rich/
real-time or real-time/secure 
processing. This ability to separate 
an application into different 
domains allows a developer to 
disable a core to conserve energy 
when the processing domain is 
no longer needed or turn it on 
in order to enhance application 
performance.

As shown, there are several 
different development boards that 
can be used to start exploring 
multicore microcontroller 
application design and take full 
control over its performance and 
energy profile.

Figure 7: An example OpenAMP 
Ping-Pong project demonstrates 
to developers how to create a 
communication channel between 
the two CPU cores. Image source: 
Beningo Embedded Group

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/embedded-software/stm32cubeh7.html
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Written by Shawn Hymel. 
License: Attribution Arduino

How to build an  
AI-powered toaster
We can treat the toasting process 
like a predictive maintenance 
problem: how do we stop the 
toasting before the bread in 
question becomes irrevocably 
damaged (i.e. burnt)? We’ll use a 
variety of gas sensors and machine 
learning to accomplish this task.

Required hardware

You will need the following 
components:

	■ Wio Terminal
	■ Grove Multichannel Gas Sensor 

v2

nodes. In the photo below, the black 
wire goes to ground, the green 
wire goes to the high side of the 
limiting resistor for the ‘toasting’ 
LED (i.e. 5V during ‘toasting’ and 
0V otherwise), and the yellow wire 
goes to the ‘cancel’ button node 
opposite GND.

Attach all of the sensors and fan 
to the mounting plate. You’ll want 
to position the fan to steadily blow 
air over the sensors. Use the I2C 
hub to connect all of the sensors 
together, and use the long Grove 
cable to connect the hub to the 
Wio Terminal. You’ll also want long 
wires to run from the Wio Terminal 
to the ammonia sensor (as it is an 
analog sensor, not I2C).

You need the MOSFET in open-
drain configuration to successfully 
control the ‘cancel’ button. The 
Wio Terminal might support open-
drain GPIO, but I was too lazy to dig 
through the SAMD51 datasheet to 
figure out how to do this in code. 
The voltage divider is needed to 
convert the 5V ‘toasting’ node to 

	■ Grove SPG VOC and eCO2 gas 
sensor

	■ Grove BME680 temperature, 
pressure, and humidity sensor

	■ Grove I2C Hub (6 port)
	■ Grove cable (100 cm)
	■ Ammonia gas sensor
	■ Pololu Carrier for MQ Gas 

Sensors
	■ Fan (40 mm, 5V)
	■ 2x 10kΩ resistors
	■ N-channel MOSFET
	■ Mounting plate (e.g. a small 

piece of aluminum)
	■ Various wire, screws, nuts, 

standoffs

Hardware connections

First, we need to hack the toaster. 
Open the toaster and find the circuit 
board that controls the toasting 
process. Use a multimeter to 
identify the following 3 nodes:

	■ Ground (GND)
	■ Node that becomes 3.3 or 5 V 

during the toasting process (for 
example, an LED that turns on 
when you press the lever down)

	■ Node that connects to GND when 
the ‘cancel’ button is pressed

Tack-solder 3 wires to each of these 

2.5 V (still considered logic HIGH 
for 3.3V pins).

Screw/bolt everything to the 
aluminum plate (or some other 
mounting device).

Mechanical build

Construct a cage or arm that 
suspends the collection of 
sensors above the toaster. The 
microcontroller (Wio Terminal) 
should not be placed with the 
sensors to avoid letting it get too 
hot.

Data collection

The model I created worked in 
my environment. It may or may 
not work for you, which means 
you’ll likely need to collect data in 
your environment. Head to github.
com/ShawnHymel/perfect-toast-
machine to view all of the code for 
this project. Upload toast-odor-
data-collection to the Wio Terminal. 
Read the comments in the code to 
determine which libraries you need 
to install prior to running the code. 

Make sure the Wio Terminal is 
plugged into a computer for 
the data collection process. I 
recommend waiting 15-30 minutes 
to let the gas sensors warm up. 
Use Python (v3+) to run serial-data-
collect-csv.py to have it listen for 
serial data from the Wio Terminal. 
This will log each toasting instance 
to a CSV file on your computer. See 
this readme to learn how to use 
serial-data-collect-csv.py.

Start the toasting process with 
a piece of bread. Press button C 
(on the top of the Wio Terminal) to 
tag the data in one of three states: 
background (not toasting), toasting, 

IMPORTANT: the SAMD51 GPIO 
pins are NOT 5V tolerant! Make sure 
you use a divider, diode, etc. to drop 
the voltage if you’re trying to sense 
something from 5V logic.

https://www.digikey.co.uk/en/maker/search-results?f=1359825874&f=1532433819
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/102991299/11689373
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020820/14317045
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020820/14317045
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020512/9489253
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020512/9489253
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020513/9369933
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/101020513/9369933
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/103020272/11201130
https://www.digikey.co.uk/en/products/detail/m5stack-technology-co-ltd/A034-D/16370080
https://www.digikey.co.uk/en/products/detail/sparkfun-electronics/SEN-17053/13252162
https://www.pololu.com/product/1479
https://www.pololu.com/product/1479
https://www.digikey.co.uk/en/products/detail/cui-devices/CFM-4010V-070-273/7620535
https://github.com/ShawnHymel/perfect-toast-machine
https://github.com/ShawnHymel/perfect-toast-machine
https://github.com/ShawnHymel/perfect-toast-machine
https://github.com/edgeimpulse/example-data-collection-csv
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or burnt. Use your senses (sight, 
smell) to determine when you think 
the toast is ‘burnt’.

See the CSV files in the datasets/ 
directory to see how I labeled the 
raw data. You’re welcome to use 
that data as a starting point (I 
just can’t promise that it will give 
you a model that works in your 
environment). Each folder is the 
brand, and a description of the 
bread used. The prefix of each CSV 
file is where I pulled the bread from 
(e.g. room temperature, refrigerator, 
freezer).

Data curation

Run this notebook in Google Colab, 
following all of the directions: 
github.com/ShawnHymel/perfect-
toast-machine/blob/main/ptm_
dataset_curation.ipynb

Note that the script will 
automatically download the dataset 
from the GitHub directory. You 
can skip those cells and manually 
upload your data to the dataset/ 
folder in Colab if you wish to use 
your own data.

At the end of Step 2, you can view 
plots of your captured raw gas 
samples (one at a time). Blue is 
‘background’, green is ‘toasting’, 
and red is ‘burnt’.

At the end of Step 3, you should 
see means, standard deviations, 
minimums, and ranges printed out. 
Copy those down – you’ll need the 
means and standard deviations for 
your inference code.

Step 4 will produce an out.zip file 
containing your curated dataset. 
Download this file and unzip it.

Machine learning model 
training

Clone this Edge Impulse project 
as a starting point: studio.
edgeimpulse.com/public/129477/
latest 

If you wish to use your own data, 
delete all of the data in the project 
and upload the data from the 
unzipped out.zip file. Note that you 
should upload files in the training/ 
directory to training in Edge 
Impulse and upload files in testing/ 
to testing.

Go to Raw data. Click Save 
parameters and then Generate 
features.

When that’s done, go to Regression. 
Feel free to modify the model, if 
you’d like. Click Start training and 
wait for training to finish.

Go to Model testing and click 
Classify all. When that’s done, 
you should see some estimates. 
Expected outcome is the ground-
truth label that expresses the 
number of seconds until the toast is 
burned, which is calculated based 
on when the state label transitioned 
from ‘toasting’ to ‘burnt’ (0 being 
the moment we believe the toast 
went from ‘toast’ to ‘burnt toast’). 
The result is the output of our 
model, given the test input data. For 
the most part, the model is capable 
of predicting ‘time till burnt’ within 
a few seconds. Interestingly, the 
model seems to be more accurate 
the closer to 0. 

Deployment

Go to the Deployment page, 
select Arduino library, and click 
Build. When the library has been 
downloaded (do not unzip it!) open 
the Arduino IDE, click Sketch > 
Include Library > Add .ZIP Library 
… select the Arduino library that 
you just downloaded from Edge 
Impulse. Note the name of the 
library! If it is different than ei-
perfect-toast-machine-arduino-
x.x.x.zip, you will need to change 
the .h include file name in your 
inference code.

Copy the perfect-toast-machine 
Arduino code found here to a 
new Arduino project. Read the 
comments at the beginning to 
see which libraries you need to 
install. Rename perfect-toast-
machine_inferencing.h if you used 
a different project name in Edge 
Impulse. Upload the code to your 
Wio Terminal.

Copy the means and standard 
deviations from the Colab script 
to the means and std_devs arrays, 
respectively.

The first time you try the project, 
pay attention to the number 
displayed on the Wio Terminal. This 
shows the number of predicted 
seconds until the toast is burned. If 
your toast comes out to light, lower 
the CANCEL_THRESHOLD in the 
code (i.e. wait until it is closer to 
being burned before popping the 
toast up). If the toast is too dark, 
increase the CANCEL_THRESHOLD 
(i.e. stop the toasting process 
sooner).

With a little tweaking, you should 
be able to make perfect toast! Try 
different types of bread, different 
thicknesses, different starting 
temperatures, etc. It should also 
work for two slices of bread and 
even bagels!

Recommended reading

All code in this project can be found 
in this GitHub repository. The Edge 
Impulse project used for training 
the machine learning model is 
found here. 

Interestingly enough, creating 
the perfect toast is an exercise in 
predictive maintenance. Instead of 
‘toast’, imagine we’re talking about 
an expensive piece of machinery. Is 
it possible to create a system that 
predicts when the machinery will 
fail (analogous to the toast burning) 
and notify us before it does fail (e.g. 
stopping the toasting process just 
before burning)? 

Performing routine maintenance 
might help limit or prevent machine 
failure, but it is often done more 
than necessary, which increases 
equipment downtime. Predictive 
maintenance systems help limit 
this downtime by notifying us 
before a machine breaks so we can 
repair it at the appropriate times. 
You can read more about predictive 
maintenance in this blog post.

https://github.com/ShawnHymel/perfect-toast-machine/blob/main/ptm_dataset_curation.ipynb
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/ptm_dataset_curation.ipynb
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/ptm_dataset_curation.ipynb
https://studio.edgeimpulse.com/public/129477/latest
https://studio.edgeimpulse.com/public/129477/latest
https://studio.edgeimpulse.com/public/129477/latest
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/perfect-toast-machine/perfect-toast-machine.ino
https://github.com/ShawnHymel/perfect-toast-machine/blob/main/perfect-toast-machine/perfect-toast-machine.ino
https://github.com/ShawnHymel/perfect-toast-machine
https://studio.edgeimpulse.com/public/129477/latest
https://www.digikey.co.uk/en/blog/npi-blog-omron-automation
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Programming a calculator to 
form concepts: the organizers 
of the Dartmouth Summer 
Research Project

retroelectro

Message to the reader: this 
article complements a previous 
article about the proposal for 
the Dartmouth summer research 
project on artificial intelligence. 
If you would like to learn more, 
please read ‘Programming a 
Calculator to Form Concepts: The 
Birth of Artificial Intelligence’ 

22

A Proposal for the 
Dartmouth Summer 
Research Project on 
Artificial Intelligence

In the summer of 1956, a 
groundbreaking proposal was made 
for what would become a milestone 
event in technological history: 
the Dartmouth Summer Research 
Project on Artificial Intelligence. 
This initiative, conceived by a group 
of visionary scientists, aimed to 
explore the nascent field of AI, 
which at the time was more a 
concept of science fiction than a 
tangible reality.

The proposal was simple yet 
ambitious: to assemble a group 
of mathematicians, logicians, 
and computer scientists for two 
months to delve into creating 
machines capable of simulating 
human intelligence. The goal was 
not just to mimic human thought 
but to surpass it, to automate 
processes that until then had been 
the exclusive domain of the human 
mind.

This project laid the groundwork 
for what we now recognize as AI/
ML, influencing everything from 
the development of expert systems 
to the neural networks that power 
today’s AI applications. The 
Dartmouth conference became 
a beacon of innovation, igniting 
a revolution that would reshape 
technology, business, and everyday 
life in ways its creators could hardly 
envision.

This is the story of those creators.

23
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John McCarthy, Dartmouth 
College

John McCarthy (1927-2011) is 
most famous for coining the 
term Artificial Intelligence. After 
completing his undergraduate 
degree at the California Institute 
of Technology (Caltech) in 1948, 
McCarthy pursued a PhD in 
mathematics from Princeton 
University. At the time, computers 
were just beginning to emerge as 
powerful tools for scientific and 
engineering tasks, and McCarthy 
saw their potential to model the 
human thought process.

As part of his PhD program, he 
spent at least one summer working 
at Bell Labs. This is where he 
met Claude Shannon and Marvin 

Minsky. Finishing his doctorate, 
Dr. McCarthy worked as a junior 
professor at Princeton before 
joining Dartmouth College’s 
faculty in the summer of 1955. 
While at Dartmouth College, 
McCarthy introduced the term 
‘Artificial Intelligence’ to describe 
the scope of topics outlined in the 
1956 Summer Research Project 
Proposal.

One of McCarthy’s more significant 
works was the development of the 

Retro Electro fun fact: while 
enrolled at Cal Tech, McCarthy 
was suspended for not attending 
any Physical Education classes, 
and he enlisted in the US Army in 
1945. Joining shortly before the war 
ended.

“Every aspect of learning or any other 
feature of intelligence can in principle be so 
precisely described that a machine can be 
made to simulate it.”

 – J. McCarthy

Written by  David Ray,  
Cyber City Circuits

https://emedia.digikey.com/view/199618710/21/
https://emedia.digikey.com/view/199618710/21/
https://emedia.digikey.com/view/199618710/21/
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LISP programming language. Due 
to its flexible memory management 
and ability to process symbolic 
expressions quickly, LISP became 
the language of choice for AI 
research and development. It 
introduced several pioneering 
concepts, including tree data 
structures, automatic storage 
management, and a self-hosting 
compiler.

In 1959 while working at Stanford 
University, where he stayed until 
retiring at the beginning of 2001, he 
published a paper titled ‘Programs 
with Common Sense,’ where he 
worked with Marvin Minsky and 
explained the need to find a way to 
teach common sense and natural 
law, aiming to equip AI systems 
with the everyday knowledge that 
humans take for granted.

McCarthy was an early pioneer 
of time-share computing, 
which allowed multiple users to 
interact with a single computer 
simultaneously. This idea was 
instrumental in the development 
of the modern internet and cloud 
computing.

For more on time-share computing, 
read the Retro Electro article on 
‘The Aloha System: Task II’ 

Claude E. Shannon, Bell 
Labs

Claude Elwood Shannon (1916-
2001) was an electrical engineer 
and unicycle enthusiast. His father 
was an attorney and judge, while 
his mother was the principal of 
the local high school. As a child, 
he was a hobbyist mechanic who 
built model planes and a radio-
controlled boat. He even built a 
small telegraph between his house 
and his childhood friend’s house. 
As a young man, he earned money 
by repairing radios at the local 
store.

Being an overachiever, he 
graduated from the University of 
Michigan in 1936 with bachelor’s 
degrees in mathematics and 
electrical engineering. Afterward, 
he found a position as a research 
assistant running MIT’s ‘Differential 

Analyzer’, which allowed him 
to fund his master’s degree in 
electrical engineering.

The ‘Differential Analyzer’ could 
solve differential equations to the 
sixth degree. Research scientists 
presented him with equations each 
day and Shannon configured the 
machine to solve them.

The machine was made up of 
around a hundred relays to control 
the operations, and much of 
his time was spent returning it 
to working order and repairing 
malfunctions. He said he would 
think of new ways to design each 
circuit as he worked on it. He found 
that the symbolic logic he learned 
at the University of Michigan could 
be used to describe what happens 
in a switching relay circuit.

His master’s thesis, ‘A Symbolic 
Analysis of Relay and Switching 
Circuits,’ is one of the most 
important foundational works in 
Computer Science. In it, he shows 
how logic operators, like ‘and,’ 
‘or,’ etc., can be used to solve and 
simplify problems with relays used 
in telephone switching systems, 

retroelectro

laying the groundwork for the 
future of digital design. For formally 
bringing Boolean logic to electrical 
engineering, he was awarded 
the Alfred Noble Prize (not to be 
confused with the Nobel Prize) 
in 1939. If there were a proper 
beginning of the ‘digital age,’ this 
document would likely be it.

Immediately following his master’s 
program, he started a PhD program 
in mathematics at MIT, where he 
worked on problems describing 
genetics using algebra and Boolean 
operators.

After school, Dr. Shannon took a 
position at Bell Laboratories, where 
he solved problems ranging from 
‘color coding’ to encryption. This 
was during the beginning of the 
United States’ active involvement 
in World War II. While at Bell 
Labs, Shannon seems to have 
compulsively solved highly complex 
problems that others couldn’t. He 
was described as ‘finding answers 
to important questions nobody else 
was asking’. He was not ‘cleared’ to 
work in the area of encryption, but 
that did not stop him. In his spare 
time, he worked on the problems 
surrounding encryption and then 
explained it to the engineers in 

that department while having 
lunch in the cafeteria. It was later 
discovered that his work was 
instrumental in the encryption 
of communications used in the 
Manhattan Project and between 
Winston Churchill and Roosevelt.

In 1952, Shannon built ‘Theseus’. 
An electromechanical ‘mouse 
in a maze’ that could solve itself 
automatically and in a very short 
time. It was made up of a couple 
of motors, several dozen relays, 
and a bar magnet dressed up 
like a mouse. It could navigate 
a customizable maze to a goal 
and after it initially solved the 
maze, it could be lifted and placed 
anywhere it would move straight to 
the goal, without any false moves.

“The real significance of this mouse 
and maze, lies in the four rather 
unusual operations it is able to 
perform. It has the ability to solve 
a problem by trial and error means, 
remember a solution and apply it 
when necessary at a later date, add 
new information to the solution 
already remembered, and forget 
one solution and learn a new one 
when the problem is changed.” – 
C.E. Shannon

Marvin Minsky, Harvard 
University

If McCarthy was the ‘Father of AI,’ 
then Minsky was the Architect. 
He grew up in New York City and 
attended the Bronx High School of 
Science and was a Navy veteran. 
In an interview, Minsky explained 
that when he graduated from grade 
school in 1944, the military draft 
was still active in support of World 
War II. To avoid being drafted into 
the Army, he enlisted in the Navy, 
where he was trained in electronics, 
radio, RADAR, etc. Concerning his 
time in the Navy, he recounts that 
he was in boot camp when Japan 
surrendered, which was a relief.  

The Bronx High School of Science 
taught many of the world’s 
visionaries, including Carl Sagan, 

“That’s the story of my life, the interplay 
between Mathematics and electrical 
engineering.” 

– C.E. Shannon

“(The) main reason the 1956 Dartmouth 
workshop did not live up to my expectations 
is that AI is harder than we thought.”

- Marvin Minsky

Retro Electro fun fact: legend has 
it that during his tenure at Bell 
Labs, Minsky invented the ‘Useless 
Machine’ novelty toy, which is now 
on office desks worldwide.

https://emedia.digikey.com/view/306614740/33/
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Richard Feynman, Neil deGrasse 
Tyson, and many Pulitzer Prize and 
Nobel Prize winners.

After two years in the Navy, Minsky 
enrolled at Harvard University, 
where he graduated with a degree 
in mathematics. He then attended 
Princeton University as a graduate 
student, earning his PhD. While 
attending Princeton, he worked at 
nearby Bell Laboratories. During 
this time, Minsky also began to 
simulate human intelligence with a 
project named SNARC.

The ‘Stochastic Neural Analog 
Reinforcement Calculator’ (SNARC) 
was a project at Bell Labs with 
Marvin Minsky while he was a 
graduate student at Princeton. It 
is credited as being the very first 
‘neural network’ computer ever 
developed. Shannon would later 
use the SNARC in his previously 
mentioned ‘Theseus’ project.

After graduation, Dr. Minsky worked 
briefly as a Junior Fellow at Harvard 
before joining the faculty at MIT in 
1958, where he continued until his 
death in 2016.

In 1963, Minsky and McCarthy 
founded MIT’s Artificial Intelligence 
Lab. J.C.R Licklider and ARPA 
funded the lab under the name 
‘Project MAC’. Many things came 
out of what is now known as 
the MIT Computer Science and 
Artificial Intelligence Laboratory 
(CSAIL), including the first Time-
Share computing system, which 
was improved upon by ‘Project 
GENIE’ at Berkeley. CSAIL 

is credited with many of the 
technological innovations of the 
late twentieth century.

Nathaniel Rochester, IBM

Nathaniel Rochester (1919-2001) 
was a pivotal figure in the early 
development of computing. He 
attended MIT and graduated with 
a bachelor’s degree in electrical 
engineering in 1941. His career 
began working at MIT’s Research 
Labs to develop radar systems 
for the U.S. Navy and later at 
Sylvania, a bulb and vacuum tube 
manufacturer, where he continued 
to advance radar technology critical 
to the war effort.

Following the war, in 1948, 
Rochester joined IBM, where he 
was one of the two key designers 
of the IBM 701, the company’s 
first mass-produced scientific 
computer. Released in 1951, the 
IBM 701 marked a significant leap 
in computing power, enabling 
complex calculations that were 

previously impractical. This 
machine also formally marks the 
beginning of IBM’s move away 
from conventional punchcard time 
clocks and mechanical typewriters 
to focus on electric computers.

Early in 1955, IBM tasked Rochester 
with leading a new research 
group at IBM focused on the new 
fields of information theory and 
automatic pattern recognition. 
He programmed the first neural 
network simulations on the IBM 
704 in this effort.

In the 1960s, Rochester became 
more involved in the broader 
computing community. He 
contributed to the design and 
standardization of programming 
languages, and his work influenced 
the development of FORTRAN 
at IBM, one of the earliest and 
most widely used programming 
languages of its day.

Pioneering Artificial 
Intelligence

The proposal for the Dartmouth 
Summer Research Project on AI, 
led by John McCarthy, marked 
a historic moment in computer 
science. This initiative established 
the foundational framework for 
what would grow into the field of 
AI, creating an environment where 
ideas could thrive and machines 
could start to mimic human 
cognition. The completion of the 
project marked not just an end, but 
a beginning, igniting a decades-
long pursuit to create intelligent 

retroelectro

The group that attended the Dartmouth Summer Research Project on Artificial Intelligence.

systems capable of learning, 
reasoning, and adapting.

Today, we see the fruits of this 
endeavor in the advanced AI 
technologies that permeate our 
lives, a testament to the visionary 
foresight of the early pioneers at 
Dartmouth.
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This article explores how 
preprocessing prepares data 
for machine learning, tackles 
challenges like missing values and 
outliers, and helps ensure fair and 
accurate model results. Further, it 
explores vital techniques such as 
scaling, rebalancing, and variable 
transformation.

How preprocessing 
prepares data for ML 
projects

Data-preparation, or preprocessing, 
is one of the most crucial steps 
that nearly every machine learning 
project must undergo to succeed. 
The process prepares raw data 
for analysis by addressing 
potential issues found in the 
samples by handling missing 
values, addressing outliers and 
inconsistencies, and encoding 
features into a suitable format for 
the algorithm. Besides ensuring 
data quality, preprocessing also 
reduces noise and often helps 
prevent or address issues such as 
overfitting. Finally, preprocessing is 
an important task when optimizing 
the performance of an algorithm, 
as the data-preparation step often 

helps reduce the dimensionality 
of the data by identifying the most 
relevant features.

Scaling, normalization, and 
standardization

Some algorithms, such as kNN 
(K-Nearest Neighbors) or SVMs 
(Support Vector Machines), rely 
on the distance between data 
samples and are thus sensitive 
to the magnitude of features. If 
the distances in the data are off, 
some instances may dominate 
the learning process, leading 
to poor model performance. 
Scaling features ensure that they 
contribute equally to the model’s 
learning process, leading to fair and 
accurate results.

There are various methods 
engineers can employ to ensure 
fair scaling across the variables. 
However, min-max scaling is a 
popular and easy-to-understand 
method that transforms features 
to a range between zero and one, 
ensuring that the minimum value 
becomes zero, the maximum 
value becomes one, and all other 
values are proportionally scaled 

in between, depending on their 
original value.

In another popular approach, 
Z-score standardization, each 
variable is converted to have a 
mean of zero and a standard 
deviation of one. The method 
achieves this by subtracting the 
global mean of the variable from 
each value in the dataset and then 
dividing it by the variable’s standard 
deviation.

How oversampling and 
undersampling help 
maintain fairness

Datasets with significant disparities 
in class distribution (e.g., 90% 
positive instances, 10% negative) 
can cause certain classifiers, such 
as kNN, to ignore the minority class 
or overestimate the importance of 
positive samples. In such cases, 
the training set can be rebalanced 
using one of two methods. In 
undersampling, entries from the 
majority class are omitted, while 
in oversampling, samples from the 
minority class are duplicated to 
achieve a balanced representation 
of the classes.

Transforming variables: 
one-hot encoding and 
label-encoding

Some algorithms can only process 
numerical values. Therefore, some 
datasets require representing 
textual labels with numbers. This 
task can be achieved, for example, 
by introducing n new attributes – 
each representing one of the n old 
textual values. The new features 
have a value of 0 everywhere 
except for the exact position that 
represents the old label of the data 
point (one-hot encoding.)

Alternatively, the original labels can 
be assigned different numerical 
values. All data points with 
that label then receive the new 
numerical index of the label (label-
encoding.)

Addressing missing values 
in ML preprocessing

The simplest solution is to delete 
samples with missing values from 
the training dataset. However, this 
is not an option if the model later 
needs to handle missing values 
(e.g., during testing.)

Alternatively, one can introduce a 
custom N/A or null value, select a 
random value from another entry, 
or compute the average or nearest 
integer value. These imputation 
methods are only meaningful when 
the number of missing values is 
small and when the entries with 
missing data are too critical to be 
deleted.

How to apply preprocessing 
to prevent data leakage

Data leakage describes a problem 
where information from the training 
set leaks into the test set, which 
must never happen. Therefore, the 
original dataset must always be 
divided first (e.g., using holdout or 
cross-validation) before applying 
any preprocessing steps. Finally, 
these preprocessing steps should 
only be applied to the test dataset 
rather than the training data. The 
test sample must always remain 
unaltered to simulate realistic 
conditions when evaluating the 
model’s performance later.

Summary

Preprocessing is a critical step 
in machine learning projects that 
prepares data for analysis and 
ensures the project’s success. 
It involves addressing issues 
like missing values, outliers, and 
inconsistencies and encoding 
features in a suitable format for the 
algorithm. Preprocessing enhances 

data quality, reduces noise, and 
helps prevent overfitting.

Scaling techniques like min-max 
scaling ensure that features 
contribute equally to the learning 
process by distributing all values 
between zero and one. At the same 
time, Z-score standardization 
converts variables to have a mean 
of zero and a standard deviation of 
one.

Rebalancing techniques like 
oversampling and undersampling 
can address class imbalances in 
the data. Transforming variables 
through one-hot encoding and label 
encoding enables the processing 
of textual data in algorithms that 
can only handle numbers. Handling 
missing values can involve deletion, 
imputation, or assigning custom 
values.

Finally, dividing the original dataset 
before preprocessing is crucial 
to prevent data leakage, where 
information from the training set 
influences the test set. The test 
set should remain unchanged for a 
realistic evaluation of the model’s 
performance.

Figure 1: One-hot encoding is generally better suited for 
nominal variables without an inherent order. However, 
label encoding is often a better choice for values 

that can be compared, as the 
resulting numbers can be chosen 
to reflect the original ordering.

Written by Maker.io Staff

What is data-preparation in ML, and 
why is it crucial for success?
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How to rapidly design and 
deploy smart machine 
vision systems
Written by Jeff Shepard

The need for machine vision 
is growing across a range of 
applications, including security, 
traffic and city cameras, retail 
analytics, automated inspection, 
process control, and vision-
guided robotics. Machine vision 
is complex to implement and 
requires the integration of diverse 
technologies and sub-systems, 
including high-performance 
hardware and advanced artificial 
intelligence/machine learning 
(AI/ML) software. It begins with 
optimizing the video capture 
technology and vision I/O to meet 
the application needs and extends 
to multiple image processing 
pipelines for efficient connectivity. 
It is ultimately dependent on 
enabling the embedded-vision 
system to perform vision-based 
analytics in real time using high-
performance hardware such as 
field programmable gate arrays 

(FPGAs), systems on modules 
(SOMs), systems on chips (SoCs), 
and even multi-processor systems 
on chips (MPSoCs) to run the 
needed AI/ML image processing 
and recognition software. This can 
be a complex, costly, and time-
consuming process that is exposed 
to numerous opportunities for cost 
overruns and schedule delays.

Instead of starting from scratch, 
designers can turn to a well-
curated, high-performance 
development platform that speeds 
time to market, controls costs, 
and reduces development risks 

while supporting high degrees 
of application flexibility and 
performance. A SOM-based 
development platform can 
provide an integrated hardware 
and software environment, 
enabling developers to focus 
on application customization 
and save up to nine months of 
development time. In addition to 
the development environment, 
the same SOM architecture is 
available in production-optimized 
configurations for commercial and 
industrial environments, enhancing 
application reliability and quality, 
further reducing risks, and 
speeding up time to market.

This article begins by reviewing 
the challenges associated with the 
development of high-performance 
machine vision systems, then 
presents the comprehensive 
development environment offered 
by the Kria KV260 vision AI starter 
kit from AMD Xilinx, and closes 
with examples of production-

Figure 1: An order of magnitude less 
energy is needed for INT8 (8b Add) 
operations compared with FP32 
operations (32b Add). Image source: 
AMD Xilinx

Instead of starting from scratch, designers 
can turn to a well-curated, high-performance 
development platform that speeds time, 
controls costs, and reduces development risks 
while supporting high degrees of application 
flexibility and performance.

https://www.digikey.co.uk/en/product-highlight/x/xilinx/kv260-vision-ai-starter-kit
https://www.digikey.co.uk/en/supplier-centers/xilinx
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ready SOMs based on the Kira 26 
platform designed to be plugged 
into a carrier card with solution-
specific peripherals.

It begins with data type 
optimization

The needs of deep learning 
algorithms are evolving. Not every 
application needs high-precision 
calculations. Lower precision data 
types such as INT8, or custom data 
formats, are being used. GPU-
based systems can be challenged 
with trying to modify architectures 
optimized for high-precision data 
to accommodate lower-precision 
data formats efficiently. The 
Kria K26 SOM is reconfigurable, 
enabling it to support a wide range 
of data types from FP32 to INT8 
and others. Reconfigurability also 
results in lower overall energy 
consumption. For example, 
operations optimized for INT8 

consume an order of magnitude 
less energy compared with an FP32 
operation (Figure 1).

Optimal architecture 
for minimal power 
consumption

Designs implemented based on a 
multicore GPU or CPU architecture 
can be power-hungry based on 
typical power usage patterns:

	■ 30% for the cores
	■ 30% for the internal memory (L1, 

L2, L3)
	■ 40% for the external memory 

(such as DDR)

Frequent accesses to inefficient 
DDR memory are required by 
GPUs to support programmability 
and can be a bottleneck to high 
bandwidth computing demands. 
The Zynq MPSoC architecture 
used in the Kria K26 SOM supports 
the development of applications 
with little or no access to external 
memory. For example, in a 

How to rapidly design and deploy smart machine vision systems

Figure 2: In this typical automotive application, the GPU requires multiple accesses 
to DDR for communication between the various modules (left), while the pipeline 
architecture of the Zynq MPSoC (right) avoids most DDR accesses. Image source: 
AMD Xilinx

 Figure 4: Typical image processing flow for an AI-based ANPR application. Image source: AMD Xilinx

Figure 5: The Kria KV260 vision 
AI starter kit is a comprehensive 
development environment for machine 
vision applications. Image source: AMD 
Xilinx

Figure 3: After a relatively few iterations, pruning can reduce model complexity (Gop) 
by 10X and improve performance (FPS) by 5X, with only a 1% reduction in accuracy 
(mAP). Image source: AMD Xilinx

typical automotive application, 
communication between the GPU 
and various modules requires 
multiple accesses to external DDR 
memory, while the Zynq MPSoC-
based solution incorporates a 
pipeline designed to avoid most 
DDR accesses (Figure 2).

Pruning leverages the 
advantages

The performance of neural 
networks on the K26 SOM can be 
enhanced using an AI optimization 
tool that enables data optimization 
and pruning. It’s very common 
for neural networks to be over-
parameterized, leading to high 
levels of redundancy that can 
be optimized using data pruning 
and model compression. Using 
Xilinx’s AI Optimizer can result 
in a 50x reduction in model 
complexity, with a nominal impact 
on model accuracy. For example, 
a single-shot detector (SSD) plus 
a VGG convolution neural net 
(CNN) architecture with 117 Giga 
Operations (Gops) was refined 
over 11 iterations of pruning 
using the AI Optimizer. Before 
optimization, the model ran 18 
frames per second (FPS) on a 
Zynq UltraScale+ MPSoC. After 
11 iterations – the 12th run of 

the model – the complexity was 
reduced from 117 Gops to 11.6 
Gops (10X), performance increased 
from 18 to 103 FPS (5X), and 
accuracy dropped from 61.55 mean 
average precision (mAP) for object 
detection to 60.4 mAP (only 1% 
lower) (Figure 3).

Real-world application 
example

A machine learning application for 
automobile license plate detection 
and recognition, also called auto 
number plate recognition (ANPR), 
was developed based on vision 
analytics software from Uncanny 
Vision. ANPR is used in automated 
toll systems, highway monitoring, 
secure gate and parking access, 

and other applications. This ANPR 
application includes an AI-based 
pipeline that decodes the video and 
preprocesses the image, followed 
by ML detection and OCR character 
recognition (Figure 4).

Implementing ANPR requires 
one or more H.264 or H.265 
encoded real-time streaming 
protocol (RTSP) feeds that are 
decoded or uncompressed. The 
decoded video frames are scaled, 
cropped, color space converted, 
and normalized (pre-processed), 
then sent to the ML detection 
algorithm. High-performance ANPR 
implementations require a multi-
stage AI pipeline. The first stage 
detects and localizes the vehicle 
in the image, creating the region 
of interest (ROI). At the same time, 
other algorithms optimize the 
image quality for subsequent use 
by the OCR character recognition 
algorithm and track the vehicle’s 
motion across multiple frames. 
The vehicle ROI is further cropped 
to generate the number plate ROI 
processed by the OCR algorithm 
to determine the characters in the 
number plate. Compared with other 
commercial SOMs based on GPUs 
or CPUs, Uncanny Vision’s ANPR 
application ran 2-3X faster on the 
Kira KV260 SOM, costing less than 
$100 per RTSP feed.
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Smart vision development 
environment

Designers of smart vision 
applications like traffic and city 
cameras, retail analytics, security, 
industrial automation, and robotics 
can turn to the Kria K26 SOM AI 
Starter development environment. 
This environment is built using 
the Zynq UltraScale+ MPSoC 
architecture and has a growing 
library of curated application 
software packages (Figure 5). The 
AI Starter SOM includes a quad-
core Arm Cortex-A53 processor, 
over 250 thousand logic cells, 
and an H.264/265 video codec. 
The SOM also has 4 GB of DDR4 
memory, 245 IOs, and 1.4 tera-
ops of AI compute to support the 
creation of high-performance vision 
AI applications offering more than 
3X higher performance at lower 
latency and power compared with 
other hardware approaches. The 
pre-built applications enable initial 
designs to run in less than an hour.

To help jump-start the development 
process using the Kria K26 SOM, 

Figure 6: The KV260 
vision AI starter kit 
includes: (top row, 
left to right) power 
supply, Ethernet 
cable, microSD 
card, and (bottom 
row, left to right) 
USB cable, HDMI 
cable, camera 
module. Image: 
AMD Xilinx

Figure 7: Production-optimized Kira 26 
SOMs for industrial and commercial 
environments are designed to be 
plugged into a carrier card with 
solution-specific peripherals. Image: 
DigiKey

AMD Xilinx offers the KV260 vision 
AI starter kit that includes a power 
adapter, Ethernet cable, microSD 
card, USB cable, HDMI cable, and 
a camera module (Figure 6). If the 
entire starter kit is not required, 
developers can simply purchase 
the optional power adapter to start 
using the Kira K26 SOM.

Another factor that speeds 
development is the comprehensive 
array of features, including 
abundant 1.8 V, 3.3 V single-
ended, and differential I/Os with 
four 6 Gb/s transceivers and four 
12.5 Gb/s transceivers. These 
features enable the development 
of applications with higher 
numbers of image sensors per 
SOM and many variations of sensor 
interfaces such as MIPI, LVDS, 
SLVS, and SLVS-EC, which are not 
always supported by application-
specific standard products (ASSPs) 
or GPUs. Developers can also 
implement DisplayPort, HDMI, 
PCIe, USB2.0/3.0, and user-defined 
standards with the embedded 
programmable logic.

Finally, the development of AI 
applications has been simplified 
and made more accessible by 
coupling the extensive hardware 
capabilities and software 
environment of the K26 SOM 
with production-ready vision 
applications. These vision 
applications can be implemented 
with no FPGA hardware design 
required and enable software 
developers to quickly integrate 
custom AI models and application 
code and even modify the vision 
pipeline. The Vitis unified software 
development platform and libraries 
from Xilinx support common design 
environments, such as TensorFlow, 
Pytorch, and Café frameworks, 
as well as multiple programming 
languages including C, C++, 
OpenCL, and Python. There is also 
an embedded app store for edge 
applications using Kria SOMs from 
Xilinx and its ecosystem partners. 
Xilinx offerings are free and open 
source and include smart camera 
tracking and face detection, natural 

language processing with smart 
vision, and more.

Production optimized Kira 
26 SOMs

Once the development process has 
been completed, production-ready 
versions of the K26 SOM designed 
to be plugged into a carrier card 
with solution-specific peripherals 
that can speed the transition into 
manufacturing (Figure 7) are 
available. The basic K26 SOM is 
a commercial-grade unit with a 
temperature rating of 0°C to +85°C 
junction temperature, as measured 
by the internal temperature sensor. 

An industrial-grade version of the 
K26 SOM rated for operation from 
-40°C to +100°C, is also available.

The industrial market demands 
long operational life in harsh 
environments. The industrial-grade 
Kria SOM is designed for ten years 
of operation at 100°C junction 
and 80% relative humidity and to 
withstand up to 40 g of shock, 
and 5 g root mean square (RMS) 
of vibration. It also comes with a 
minimum production availability of 
ten years to support long product 
lifecycles.

Summary

Designers of machine vision 
applications such as security, 

traffic, and city cameras, retail 
analytics, automated inspection, 
process control, and vision-guided 
robotics can turn to the Kria K26 
SOM AI Starter to speed time to 
market, help to control costs and 
reduce development risks. This 
SOM-based development platform 
is an integrated hardware and 
software environment, enabling 
developers to focus on application 
customization and save up to nine 
months of development time. 
The same SOM architecture is 
available in production-optimized 
configurations for commercial and 
industrial environments, further 
speeding time to market. The 
industrial version has a minimum 
production availability of 10 years 
to support long product lifecycles.

https://www.digikey.co.uk/en/products/detail/amd-xilinx/SK-KV260-G/13985269
https://www.digikey.co.uk/en/products/detail/amd-xilinx/SK-KV260-G/13985269
https://www.digikey.co.uk/en/products/detail/amd-xilinx/HW-BACCP01-SK-G/14111914
https://www.digikey.co.uk/en/products/detail/amd-xilinx/HW-PSA01-SK-G/14111903
https://www.digikey.co.uk/en/products/detail/amd-xilinx/SM-K26-XCL2GC/13985266
https://www.digikey.co.uk/en/products/detail/amd-xilinx/SM-K26-XCL2GI/13985243
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Written by Pete Bartolik

Technologies developed for 
automotive applications frequently 
transfer to other markets due 
to automobile manufacturers’ 
rigorous requirements for reliability, 
performance, and the need for 
fast data rates in an electronically 
hostile environment. That’s why 
Gigabit Multimedia Serial Link 
(GMSL) cameras are finding ready 
markets for vision applications 
in areas such as automation and 
robotics, smart agriculture, digital 
healthcare, avionics, robotaxis, 
and retail and warehouse inventory 
management.

Initially introduced for addressing 
applications for high-speed video 
and data transmission in vehicles, 
Analog Devices GMSL is a widely 
adopted and proven technology for 
bringing new levels of performance 
to high-speed video links and 
enabling multi-streaming over a 
single cable.

Vision applications require very 
large data streams to ensure high-
quality video. A full HD image is 
comprised of 1080 rows by 1920 
columns. That amounts to 2 million 
pixels, each of which consists of 
a red, green, and blue element, 
resulting in 6 million elements. 
Each element represents 8 bits 
of data, so every frame results 
in nearly 50 Mbps of data. At 60 
frames per second, the required 
data rate for one camera is over 
three-and-a-half Gbps.

First-generation GMSL, first 
available in 2008, utilized the 

With cameras scaled down to the 
level of CMOS sensors, they can 
produce what once was considered 
incredible quality at low cost and 
with low power demands. Image 
sensors have millions of receptor 
elements, each of which converts 
measurements into digital values 
to be streamed via serial data lanes 
of a parallel interface, along with 
synchronization information.

Both GMSL2 and GMSL3 utilize 
MIPI interface standards that 
provide designers and vendors 
access to a wide range of image 
sensors for GMSL cameras.

GMSL versus GigE

Engineers starting out on vision 
applications will no doubt quickly 
face a decision on whether to use 
GMSL or gigabit Ethernet (GigE) 
vision technology. GigE is widely 
used in industrial applications 
due largely to its reliance on 
Ethernet network infrastructure and 
standards.

GigE Vision cameras with 2.5 
GigE, 5 GigE, and 10 GigE are 
commonplace in applications 
today, and 100 GigE state-of-the-
art cameras can utilize up to a 100 
Gbps data rate. GMSL is designed 
to transmit data over coaxial cable 
or shielded twisted pair cable at 
up to 15 meters, compared to 100 
m for GigE, although both may be 
exceeded under certain conditions.

Each technology is capable of 
transmitting data and power 

low-voltage differential signaling 
(LVDS) standard to deliver parallel 
data downlink rates up to 3.125 
Gbps. That was particularly 
suited for conveying data from 
multiple camera systems and 
other advanced driver assistance 
applications (ADAS), as well as 
the growing use of in-car, high-
definition flat panel displays.

A second generation, GMSL2, was 
introduced in 2018, increasing data 
rates up to 6 Gbps and supporting 
more standard highspeed video 
interfaces, including HDMI and 
the MIPI interface standard, a 
popular image sensor interface 
for consumer and automotive 
cameras. These advances 
accommodated full high definition 
(FHD) displays and cameras with 
resolution up to 8 MP.

GMSL3, the next generation, can 
deliver data up to 12 Gbps over 
a single cable, supports multiple 
4K resolution streams, the daisy-
chaining of multiple displays, and 
aggregation of multiple cameras 
such as those located on the front, 
back, and sides of a vehicle to 
provide a 360° viewing capability. 
Today, increasing numbers 
of automobile manufacturers 
supplement rear and side-view 
mirrors with cameras, utilize 
forward and rear-facing cameras 
for collision avoidance, and internal 
cabin cameras for monitoring driver 
and passenger safety. GMSL3 can 
aggregate data from multiple video 
feeds as well as LiDAR and radar.

Road-tested GMSL cameras 
drive into new markets

https://www.digikey.co.uk/en/supplier-centers/analog-devices
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through the same cable: GMSL 
uses Power over Coax (PoC) so 
video, audio, control, data, and 
power can be transported on a 
single channel. Most GigE Vision 
applications rely on Power over 
Ethernet (PoE) for 4-pair Ethernet, 
or less commonly, Power over Data 
Line (PoDL) for Single-Pair Ethernet 
(SPE).

System requirements and 
application needs will determine 
which vision technology is 
most appropriate. GigE Vision, 
for example, may offer some 
advantages for single-camera 
applications, particularly where 
they connect directly to a PC or 
an embedded platform with an 
Ethernet port.

When using multiple cameras, GigE 
Vision applications will require use 
of a dedicated Ethernet switch, 
a network interface card (NIC) 
with multiple Ethernet ports, or an 
Ethernet switch IC. That switching 
requirement can potentially reduce 
the maximum total data rate and 
introduce unpredictable latency 
between the cameras and the 
terminal device, whereas GMSL 
provides a simpler, more direct 
architecture.

GigE Vision devices may support 
higher resolution and a higher 
frame rate – or both simultaneously 
– with additional buffering and 
compression. Frame buffering and 
processing are not provided by 
GMSL devices, so resolution and 
frame rate depend on what the 
image sensor can support within 
the link bandwidth. Engineers will 
need to determine a simple trade-
off between resolution, frame rate, 
and pixel bit depth.

GMSL simplifies high-speed 
video architecture

GigE Vision cameras typically 
utilize a signal chain that includes 
an image sensor, a processor, and 
an Ethernet physical layer (PHY) 
(Figure 1). Raw image data from 
the sensor is converted by the 
processor into Ethernet frames, 
often relying on compression or 
frame buffering to fit the data 
rate of the supported Ethernet 
bandwidth.

The GMSL camera signal chain 
utilizes a serializer/deserializer 
(SerDes) architecture that avoids 
the use of a processor (Figure 2). 
Instead, image sensor parallel data 
is converted by the serializer into 

a high-speed serial data stream. 
On the back end, a deserializer 
converts the serial data back into 
parallel form for processing by 
an electronic control unit (ECU) 
system-on-chip (SoC).

The GMSL camera architecture 
makes it simpler to design small 
form factor cameras with low 
power consumption. Serializers 
can directly connect to cameras 
through standard MIPI CSI-2 
interface and transmit packetized 
data through the GMSL link.

A typical host device is a 
customized embedded platform 
with one or more deserializers that 
transmit image data through MIPI 
transmitters in the same format as 
the image sensor MIPI output. New 
GMSL camera drivers are required 
for customized designs, but if there 
is an existing driver for the image 
sensor, it can be utilized with just 
a few profile registers, or register 
writes to enable a video stream 
from cameras to a control unit.

GMSL components

ADI offers a comprehensive 
portfolio of serializers and 
deserializers to support a variety 
of interfaces. These feature robust 
PHY designs, low bit error rates 
(BER), and backward compatibility. 
Any video protocols can be bridged 
together – for example, HDMI to the 
Open LVDS Display Interface (oLDI).

Engineers will need to select 
the best components based on 

Figure 1: Representation of key signal chain components on the sensor 
side of GigE Vision cameras. Image source: Analog Devices, Inc.

Figure 3: A schematic 
illustrating the data 
stream utilizing 
MAX96717 serializers. 
Image source: Analog 
Devices, Inc.

Road-tested GMSL cameras drive into new markets

application needs, such as device 
interfaces, data rates, bandwidth, 
power consumption, environmental 
conditions, and cable length. 
Other factors include EMI, error 
handling, and signal integrity. 
Some examples of ADI’s GMSL 
components include:

	■ MAX96717, a CSI-2 to GMSL2 
serializer (Figure 3), operates at a 
fixed rate of 3 Gbps or 6 Gbps in 
the forward direction and 187.5 
Mbps in the reverse direction

	■ MAX96716A, which converts 
dual GMSL2 serial inputs to MIPI 
CSI-2. The GMSL2 inputs operate 
independently and video data 
from both can be aggregated for 
output on a single CSI-2 port or 
replicated on a second port for 
redundancy

	■ The MAX96724, a quad 
tunneling deserializer, 
converts four GMSL 2/1 
inputs to 2 MIPI D-PHY or 
C-PHY outputs. Data link 
rates are 6/3 Gbps for GMSL2 
and 3.12 Gbps for GMSL1, 
and reverse link rates of 187.5 
Mbps for GMSL2 and 1 Mbps 
for GMSL1

	■ The MAX96714 deserializer 
converts a single GMSL 2/1 
input to MIPI CSI-2 output, 
with a fixed rate of 3 Gbps or 

Figure 2: GMSL cameras utilize a simpler signal chain 
architecture on the sensor side than GigE Vision. 
Image source: Analog Devices, Inc.

Conclusion

With their reduced complexity, 
GMSL cameras are more compact 
and generally able to provide 
a more cost-effective solution 
compared to GigE Vision. GMSL 
provides reliable transport of 
high-resolution digital video with 
microsecond latency for a growing 
range of camera and display-based 
applications, from machine learning 
and autonomous operations to 
infotainment and safety. Millions 
of GMSL links are enhancing the 
driver experience on the road today, 
attesting to their reliability and 
performance.

6 Gbps in the forward direction 
and 187.5 Mbps in the reverse 
direction

	■ The MAX96751 is a GMSL2 
serializer with HDMI 2.0 input 
that converts HDMI to single or 
dual GMSL2 serial protocol. It 
also enables full-duplex, single-
wire transmission of video and 
bidirectional data

	■ The MAX9295D converts single- 
or dual-port 4-lane MIPI CSI-2 
data streams to GMSL2 or 
GMSL1

ADI also offers several 
development tools, such as the 
MAX96724-BAK-EVK# evaluation 
kit for the MAX96724 devices.

https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96717GTJ-VY/16675118
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96716AGTM-VY/22107593
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96724FGTN-VY/18713765
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96714RGTJ-V/20841739
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX96751GTN-V/24617867
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/MAX9295DGTM-VY-T/24613364
https://www.digikey.co.uk/en/products/detail/analog-devices-inc-maxim-integrated/max96724-bak-evk/18713767
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The ability for machines to interpret 
and analyze visual data is critical 
to many industries of today, 
enabling automated systems to 
extract meaningful information 
from images or video streams. At 
its core, this technology mimics 
how we perceive the world around 
us but leverages computational 
power, advanced algorithms, and 
specialized hardware to process 
vast amounts of visual data with 
high precision and speed.

The impact of machine and 
computer vision extends across 
a number of industries. In 
manufacturing, vision systems play 
a crucial role in quality control and 
defect detection. In automotive, 
vision enables autonomous 
vehicles to perceive and navigate 
their surroundings. Healthcare 
benefits from medical imaging 
applications, such as AI-assisted 
diagnostics, while retail and 
security leverage vision for facial 
recognition and behavioral analysis.

Modern machine vision systems 
rely on a combination of hardware 
and software components:

	■ Sensors and cameras: these 
capture images and video, 

ranging from simple 2D 
cameras to advanced LiDAR 
and hyperspectral imaging 
systems

	■ Processing units: GPUs, TPUs, 
FPGAs, and AI accelerators 
process visual data in real time, 
supporting deep learning-based 
decision-making

	■ Algorithms: classical 
techniques, such as edge 
detection and template 
matching, coexist with modern 
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AI-driven approaches like 
convolutional neural networks 
(CNNs) and transformer-based 
vision models

	■ Interfaces and communication 
protocols: standardized 
interfaces (e.g., USB3 Vision, 
GigE Vision, MIPI) and 
industrial protocols (EtherCAT, 
Modbus) facilitate seamless 
integration with broader 
automation systems

As the technology continues to 
evolve, machine and computer 
vision are shifting towards real-
time, AI-powered, and Edge-based 
implementations. This article 
explores the history, evolution, and 
current landscape of machine/
computer vision, diving into the 
technologies, topologies, and 
interfaces that enable them.

The history of computer and 
machine vision

Whilst machine and computer 
vision seem like brand-new cutting-
edge technology, its origins actually 
date back to the 1950s and 1960s, 
when researchers began exploring 
the possibility of enabling machines 
to interpret visual data. At these 
early stages, computer vision was 
primarily an academic pursuit, 
focused on recognizing simple 
patterns such as handwritten 
text and basic geometric shapes. 
Early efforts relied on rudimentary 
image processing techniques like 
edge detection and thresholding, 
laying the foundations for future 
advancements. Fast forward to 
the 1970s and feature extraction 
methods, including edge detection 
algorithms such as the Sobel 
operator, allowed for more 
sophisticated object recognition. 
Researchers also began developing 
techniques for 3D reconstruction, 
moving beyond simple two-
dimensional image analysis.

The 1980s was a big decade for the 
technology, finally seeing its first 

practical applications, particularly 
in industrial automation. The 
emergence of digital imaging 
technology enabled early vision 
systems to be deployed for tasks 
such a defect detection, part 
inspection, and barcode reading. 
During this period, industries 
started adopting machine vision for 
quality control in manufacturing, 
leveraging these early systems to 
improve efficiency and accuracy 
across production lines. The 
1990s saw further advancements, 
particularly in statistical image 
analysis and pattern recognition. 
The introduction of early neural 
networks into image processing 
signaled the beginning of AI-driven 
vision, though the technology 
was still in its infancy. Meanwhile, 
improvements in hardware, 
especially computational power, 
were making it possible to process 
images much faster and more 
efficiently. Feature-based vision 

techniques, such as Scale-Invariant 
Feature Transform (SIFT) and 
Speeded-Up Robust Features 
(SURF), began cropping up in 
the 2000s, massively improving 
object recognition. This period 
also saw the rapid expansion of 
3D vision technologies, including 
stereo cameras and structured 
light systems, which allowed for 
more precise depth perception in 
automated vision systems.

However, the 2010s were the real 
turning point thanks to the rise of 
deep learning. The introduction 
of convolutional neural networks 
(CNNs) revolutionized computer 
vision by surpassing traditional 
algorithmic approaches. In 
2012, the success of AlexNet 
in the ImageNet competition 
demonstrated that AI-powered 
models could achieve human-level 
accuracy in image classification, 
sparking widespread interest 

Figure 1: Modern 
machine vision 
system

Figure 2: Camera performing 360° inspection of products on a conveyor 

https://www.pinecone.io/learn/series/image-search/imagenet/
https://www.pinecone.io/learn/series/image-search/imagenet/
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in deep learning for vision 
applications. This breakthrough 
accelerated the development 
of more sophisticated AI-based 
vision systems, which soon found 
applications in autonomous 
vehicles, medical diagnostics, 
robotics, and facial recognition. 
Deep learning models such 
as ResNet, YOLO, and Vision 
Transformers further pushed the 
boundaries of what was possible in 
computer vision, enabling real-time 
object detection and recognition 
with unprecedented accuracy.

As vision systems have become 
increasingly reliant on AI the focus 
has shifted towards real-time 
processing and Edge computing. 
Edge AI has allowed machine 
vision applications to function in 
environments where latency was 
critical, such as robotics, industrial 
automation, and security systems. 
Today, machines and computers 
are embedded across a wide range 
of industries, from smart factories 

to AI-powered medical imaging. 
Advances in sensor technology, 
AI-driven models, and high-speed 
processors continue to refine and 
expand the capabilities of modern 
vision systems.

Topologies, types, and 
technologies in computer 
and machine vision

Computer and machine vision 
systems are built on various 
topologies, sensor types, and 
processing technologies, each 
suited for different applications. 
Depth perception technologies, 
including structured light, stereo 
vision, time-of-flight (ToF), 
and LiDAR, provide different 
approaches to 3D vision, enabling 
machines to understand spatial 
relationship and movement with 
greater accuracy.

The topologies for depth sensing:

Structured light
Structured light depth sensing 
operates by projecting a predefined 
pattern – often a grid, stripe, or 
dot matrix – onto a scene and 
capturing its deformation with 
a camera. By analyzing how the 
projected pattern distorts upon 
contact with surfaces, the system 
reconstructs depth information 
with high precision. This technique 
is commonly implemented using 
infrared (IR) sources to avoid visible 
light interference.

As demonstrated in Figure 3, 
the depth is computed using 
triangulation principles. The 
projector and camera form a 
stereo vision system, where 
the displacement of structured 
patterns provides disparity 
information that translates into 
depth.

Depth, Z, is determined using the 
formula:

Here, B is the baseline distance 
between the projector and camera, 
f is the focal length, and d is the 
disparity.

Different projection encoding 
methods can be used to optimize 
accuracy, speed, or robustness. 
Phase-shift encoding uses a 
sinusoidal (wave-like) pattern 
projected with multiple phase shifts 
to calculate phase differences at 
subpixel precision. Gray code/
binary-coded patterns make use of 
sequential binary patterns uniquely 

encoded onto each pixel, making it 
far more robust against occlusions 
and object discontinuities. Speckle 
projection is a pseudo-random dot 
matrix which enables dense depth 
estimation with a single frame, for 
example with Apple’s Face ID.

Technical advantages:
	■ High spatial resolution and 

depth accuracy at short ranges 
(typically under 5m) 

	■ Effective for applications 
requiring fine-grained depth 
maps, such as 3D scanning, 
biometric authentication 
(e.g., Face ID), and industrial 
metrology 

	■ Real-time operation with 
structured illumination strategies 
like phase-shifting or binary-
coded patterns

Challenges:
	■ Susceptible to ambient light 

variations, making outdoor 
performance unreliable 

	■ Requires a high-framerate 
camera and precise calibration 
for accurate reconstruction 

	■ Performance degrades with 

highly reflective or transparent 
surfaces

Stereo vision
Stereo vision replicates human 
binocular perception by capturing 
two images from slightly offset 
cameras and computing depth 
through disparity analysis. 

The correspondence problem 
– matching pixels between left 
and right images – is addressed 
through algorithms such as block 
matching, semi-global matching 
(SGM), or deep learning-based 
methods. It is important to consider 
with disparity map computation 
that:

	■ Local methods, such as block 
matching, are faster but more 
sensitive to noise and texture

Figure 3: A regular striped pattern is projected 
onto the ball. The rounded surface of the ball 
distorts the stripes, and the distorted image is 
captured by a camera for analysis and object 
reconstruction. 

Figure 4: A standard 
stereo vision system 
example.

	■ Global methods, such as 
SGM, optimize for disparity 
consistency across images

	■ Deep learning methods, like 
CNNs and transformer-based 
models, improve robustness in 
low-texture or occluded regions

The resulting disparity map then 
provides relative depth estimation 
where the baseline (distance 
between cameras) and focal length 
determine the depth accuracy. A 
larger baseline improves depth 
precision but increases occlusion. 

Technical advantages:
	■ Passive system that does not 

require active light projection, 
enabling outdoor operation

	■ Well-suited for robotic 
navigation, SLAM (Simultaneous 
Localization and Mapping), and 
industrial automation

	■ Scalable and cost-effective when 
using high-resolution CMOS or 
CCD sensors

Challenges:
	■ Performance is highly dependent 

on image texture; uniform or 
repetitive surfaces lead to poor 
disparity matching

	■ Requires significant 
computational resources for 

Time difference

Reflected light

Emitted light

Light-emitting
element

Light-receiving
element

Target
object

Emitted light
(pulse signal)

Figure 5: An illustration of dToF
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real-time depth estimation, 
particularly in high-resolution 
applications

	■ Occlusion and edge bleeding 
effects introduce depth 
inaccuracies

Time-of-Flight (ToF) sensors

Time-of-Flight (ToF) depth sensing 
is based on measuring the time 
delay or phase shift of emitted 
infrared (IR) light as it reflects off 
a target and returns to the sensor. 
This enables accurate distance 
measurements, generating real-
time depth maps with minimal 
computational complexity. ToF 
systems are implemented in two 
main architectures:

Direct Time-of-Flight (dToF) 
measures the absolute travel 
time of individual photons using 
Single-Photon Avalanche Diodes 
(SPADs) or Silicon Photomultipliers 

(SiPMs). This method is well-
suited for applications requiring 
long-range, high-precision depth 
measurements, such as automotive 
LiDAR and industrial metrology.

Indirect Time-of-Flight (iToF) emits 
modulated infrared signals and 
measures the phase shift between 
emitted and received light using 
CMOS-based image sensors 
with demodulation pixels. iToF 
is commonly used in consumer 
electronics and AR/VR applications 
due to its compact design and 
lower power consumption.

ToF sensor performance can be 
influenced through several system-
level design factors to improve 
precision, coverage, or varying 
lighting conditions. This can be 
achieved by altering modulation 
frequencies/wavelengths, emitter 
technology, optical designs, 
or controlling calibration and 
exposure.

Technical advantages:
	■ Provides dense, real-time 

depth maps with minimal 
computational overhead

	■ Effective in low-light and 
textureless environments

	■ Well-suited for gesture 
recognition, AR/VR applications, 
and industrial process 
monitoring

Challenges:
	■ Depth precision decreases 

with distance due to multi-path 
interference

	■ Susceptible to errors in highly 
reflective or absorptive surfaces

	■ Requires precise calibration of 
illumination and sensor exposure 
times to avoid artifacts

LiDAR (Light Detection and 
Ranging)
LiDAR uses pulsed laser beams 
to generate high-resolution 3D 
point clouds of an environment. 
By measuring the time delay 
between pulse emission and 
reception, LiDAR systems construct 
depth maps with sub-centimeter 
accuracy. LiDAR can operate in 1D 
(single-line scanning), 2D (rotating 
plane scanning), or 3D (solid-state 
or MEMS-based scanning).

LiDAR calculates distance, d, via 
the following formula:

Here, c is the speed of light, t is 
the total time for the laser pulse to 
travel to the object and back, and 

The choice of technology depends on 
environmental constraints, computational 
resources, and the precision required for 
machine vision applications.

Figure 6: An illustration of iToF provide high sensitivity for 
detecting weak return signals 
but introduce additional noise, 
requiring sophisticated filtering and 
amplification techniques. Single-
photon avalanche diodes (SPADs) 
on the other hand enabled time-
correlated single-photon counting, 
offering extreme sensitivity and 
superior performance in low-light 
conditions.

The effectiveness of these 
receivers directly impacts point 
cloud density and resolution, 
which define the granularity of 
the captured 3D environment. 
The angular resolution, which is 
typically between 0.1 and 1 degree, 
determines the level of detail in the 
scan and affects object detection 
accuracy. Scan rates, ranging from 
10 to 100Hz, influence real-time 
application viability, with higher 
rates improving responsiveness 
in dynamic environments. High-
end LiDAR systems can generate 
millions of points per second, 
allowing for precise environmental 
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Figure 7: Basic 
LiDAR principle 
visualized

Figure 8: Visualization of how LiDAR works on a vehicle for object detection and recognition.
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the division by 2 accounts for the 
round trip.

LiDAR systems commonly operate 
at 905nm or 1,550nm. The 905nm 
wavelength is cost-effective 
but has a shorter range and is 
subject to eye safety limitations. In 
contrast, 1,550nm LiDAR is safer 
for higher power emissions and can 
achieve longer ranges but requires 
more expensive components such 
as InGaAs detectors.

Various beam steering methods 
can be used to direct the laser 
beam for different outcomes or use 
cases. These include:

	■ Mechanical scanning: uses 
rotating mirrors to direct the 
laser beam over the field of 
view, common in traditional 
automotive and mapping LiDAR

	■ MEMS-based scanning: employs 
micro-electromechanical mirrors 
to reduce size and cost while 
maintaining scanning capability

	■ Solid-state (Flash LiDAR): 
illuminates the entire scene at 
once, eliminating the need for 
moving parts and enhancing 
robustness

	■ Optical Phased Arrays (OPAs): 
utilizes interference patterns 
to steer beams electronically, 
enabling ultra-compact, solid-
state implementations without 
mechanical components

LiDAR systems also rely on 
advanced receiver technologies 
to capture returning laser pulses 
accurately and generate high-
fidelity depth maps. For instance, 
avalanche photodiodes (APDs) 



46 47
we get technical

reconstruction which is crucial for 
applications such as autonomous 
navigation, mapping, and industrial 
automation.

Technical advantages:
	■ Superior range (tens to hundreds 

of meters) and depth accuracy
	■ Robust performance in diverse 

lighting conditions, including 
direct sunlight

	■ Essential for applications 
like autonomous vehicle 
perception, aerial mapping, and 
infrastructure inspection

Challenges:
	■ High cost and power 

consumption compared to other 
depth sensing methods

	■ Requires substantial data 
processing for real-time 
operation, often necessitating 
hardware acceleration (e.g., 
FPGAs, GPUs)

	■ Performance can be affected 
by rain, fog, or highly specular 
surfaces

Each depth sensing topology 
offers distinct advantages and 
limitations depending on the 
application. Structured light 
excels in short-range precision, 
stereo vision provides passive 
depth estimation, ToF balances 
real-time performance with 
moderate range, and LiDAR leads 
in long-range accuracy. The 
choice of technology depends 
on environmental constraints, 
computational resources, and the 
precision required for machine 
vision applications.

Orbbec cameras 
implementing mainstream 
3D technologies

	■ Monocular Structured Light: 
Astra Mini Pro, Astra 2

	■ Stereo vision structured light 
camera: Gemini 330 series, 
Gemini 2 series (Gemini 2, 
Gemini 2 L, Gemini 2 XL)

	■ TOF: Femto series (Femto Bolt, 
Femto Mega, Femto Mega I)

Orbbec Gemini 330 series stereo 
vision 3D cameras integrate two 
infrared imaging modules, a laser 
diode module (LDM) for infrared 
speckle pattern projection, an RGB 
imaging module, a depth engine 
processor (MX6800), an image 
signal processor (ISP), and an 
inertial measurement unit (IMU). 
The LDM emits infrared speckle 
patterns onto the target scene, 
while the dual infrared imaging 
modules capture synchronized 
images from distinct viewpoints. 
The depth engine processes these 
images using advanced depth 
reconstruction algorithms to 
generate a high-precision depth 
map of the scene.

Typical applications:
	■ Preferred cameras for robotic 

arm applications

1.	Stereo vision cameras
	■ Objects in motion, 

require good accuracy at 
short distances, Varied/
un-controlled lighting 
conditions, Multiple 
cameras with shared FoV

	■ Example: bin-picking
2.	ToF cameras

	■ Stationary objects, 
require high-fidelity edge 
definition, Require good 
accuracy at medium-to-
long distances, Controlled 
lighting conditions

	■ Example: palletization/de-
palletization

3.	Structured light cameras    
	■ Stationary objects, require 

highest accuracy at short-
to-medium distances, 
controlled lighting 
conditions

	■ Example: defect detection
	■ Preferred depth cameras for 

AMR applications
1.	Stereo vision cameras

	■ Require stable depth maps 
while in motion, operate in 
varied lighting conditions, 
often require multiple 
cameras for 360° view, 
multi-camera interference

	■ Example: pallet/tote-
moving, forklifts, cleaning, 

delivery
	■ Preferred depth cameras for 

humanoids
1.	Stereo vision cameras

	■ Stable depth perception, 
adaptability to varied 
lighting conditions, multi-
camera coordination and 
360° view, low interference 
and high compatibility

2.	ToF cameras
	■ High precision depth 

sensing, real-time 
performance, adaptability 
to complex lighting, multi-
target detection and 
tracking

	■ Others 
1.	Structured light cameras:

	■ Facial recognition (e.g. 
facial payment kiosks)

	■ 3D scanning (e.g. body part 
scanning, object scanning)

Intel RealSense depth and 
tracking cameras

Intel RealSense cameras have 
become a go-to product within 
the machine and computer vision 
space, offering engineers high-
precision depth perception and 
positional tracking. These solutions 
are widely adopted in robotics, 

autonomous navigation, industrial 
automation, medical imaging, and 
augmented/virtual reality (AR/VR) 
due to their compact form factor, 
real-time processing capabilities, 
and extensive software support.

Intel RealSense Depth Cameras 
leverage a combination of 
stereo vision, active infrared (IR) 
projection, and structured light to 
compute high-fidelity depth maps 
in real time. The stereo IR cameras 
capture left and right image pairs, 
and an onboard Intel Depth Sensing 
ASIC computes depth using 
disparity matching algorithms. 
The active IR pattern projector 
improves accuracy in low-texture 
environments by adding depth cues 
where natural visual features are 
sparse.

Intel’s D400 series are a popular 
choice, for example:

	■ D415 – features a rolling shutter 
with a narrow field of view, suited 
for applications requiring precise 
object scanning

	■ D421 - module brings advanced 
depth-sensing technology to a 
wider audience at an affordable 
price point

	■ D435/D435i – utilizes a global 
shutter, making it ideal for fast-
moving objects in robotics and 
automation

	■ D455 – offers an extended 
baseline (95mm), improving 
depth accuracy for mid-range 
applications.

These cameras see use anywhere 
from autonomous mobile robots 

(AMRs) and drones, 3D scanning 
and volumetric measurements, 
medical imaging, or even biometric 
security measures.

Interfaces in computer and 
machine vision

The efficiency and scalability of 
machine vision systems depend 
on the interfaces used to transfer 
images data between cameras, 
processing units, and control 
systems. Different applications 
require specific connectivity 
solutions, balancing bandwidth, 
latency, power efficiency, and 
environmental robustness. The 
most widely used interfaces in 
machine/computer vision are 
GMSL/FAKRA, USB/MIPI CSI, 
Ethernet, and Power over Ethernet 
(PoE).

GMSL/FAKRA
Gigabit Multimedia Serial Link 
(GMSL) is a high-speed serial 
interface designed for automotive 
and industrial vision applications. 
It supports long-distance, high-
bandwidth video transmission 
with low latency, making it ideal 
for autonomous vehicles, ADAS 
(Advanced Driver Assistance 
Systems), and robotic vision. GMSL 
operates over FAKRA connectors, 
which provide rugged, shielded 
connections suitable for harsh 
environments.

GMSL can achieve data rates 
of up to 6Gbps per link while 
maintaining low latency, ensuring 

Figure 9: Intel RealSense D435f depth 
camera Credit: Intel Corporation

Structured light excels in short-range 
precision, stereo vision provides passive 
depth estimation, ToF balances real-time 
performance with moderate range, and LiDAR 
leads in long-range accuracy. 

Understanding computer and machine vision
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minimal delays in time-sensitive 
applications such as autonomous 
navigation. Forward error 
correction (FEC) mechanisms 
help mitigate signal degradation 
over long distances, making it 
highly reliable in electrically noisy 
environments. Unlike Ethernet-
based solutions, GMSL is optimized 
for uncompressed, real-time data 
streaming, reducing processing 
overhead on receiving hardware.

USB (USB3 Vision and MIPI CSI)
USB remains a dominant interface 
for machine vision, particularly in 
research, laboratory automation, 
and consumer applications. USB3 
Vision, based on USB 3.0, provides 
high-speed data transfer up to 
5Gbps (with USB 3.1 supporting 
up to 10Gbps), making it well-
suited for high-resolution cameras 
requiring minimal latency. The plug-
and-play nature of USB simplifies 
deployment in industrial inspection, 
microscopy, and AI-driven vision 
systems. However, USB’s cable 
length limitation (typically under 
five meters) can be a constraint in 
larger-scale deployments.

For embedded vision applications, 
MIPI CSI (Camera Serial Interface) 
is the preferred standard, enabling 
direct connection between 
cameras and system-on-chip (SoC) 
processors. MIPI CSI supports 
scalable data rates, typically up 
to 2.5Gbps per lane, with multiple 
lanes available for increased 
bandwidth. It is common in 

smartphones, drones, and edge 
AI devices due to its low power 
consumption and efficient data 
transfer. Unlike USB, MIPI CSI is 
optimized for continuous, high-
speed image capture without 
requiring a host controller.

Ethernet and Power over 
Ethernet (PoE)
Ethernet is a key interface for 
networked and industrial vision 
systems, offering long-distance, 
high-bandwidth connectivity. GigE 
Vision (Gigabit Ethernet Vision) is 
an industry standard that enables 
cameras to transmit uncompressed 
images over Ethernet networks at 
speeds of up to 1Gbps, with 10GigE 
Vision extending this to 10Gbps. 
Unlike USB, Ethernet allows 
for cable lengths of up to 100 
meters, making it ideal for factory 
automation, security, and remote 
monitoring applications.

Power over Ethernet (PoE) further 
enhances Ethernet-based vision 
systems by delivering both power 
and data over a single cable, 
reducing cabling complexity. 
Standard PoE (IEEE 802.3af) 
provides up to 15.4W, while 

PoE+ (IEEE 802.3at) supports 
up to 25.5W, allowing for more 
powerful image sensors and 
onboard processing. However, 
power constraints can limit 
camera selection, particularly in 
applications requiring intensive 
onboard computing.

Bandwidth and latency 
considerations

Each interface has trade-offs in 
terms of bandwidth, latency, and 
real-time performance:

	■ GMSL: up to 6Gbps per link, 
ultra-low latency, ideal for real-
time applications

	■ USB3 Vision: 5Gbps (USB 3.0), 
10Gbps (USB 3.1), moderate 
latency due to host processing

	■ MIPI CSI: 2.5Gbps per lane, 
very low power, efficient for 
embedded systems

	■ GigE Vision: 1Gbps (standard), 
10Gbps (10GigE Vision), higher 
latency but long-distance 
support

	■ PoE: offers flexibility, but power 
constraints impact camera 
capability

Synchronization and error 
handling

In industrial automation and 
robotics, precise synchronization 
of multiple cameras is critical. 
Ethernet-based vision systems 
support Precision Time Protocol 
(PTP) to enable hardware-level 
synchronization. GMSL and MIPI 
CSI provide deterministic data 
transfer, ensuring consistent frame 
timing. Error correction techniques, 
such as checksums in Ethernet 
and FEC in GMSL, enhance data 
integrity across long transmission 
distances.

The choice of interface depends on 
the application’s requirements:

	■ Automotive: GMSL remains 
dominant, but automotive 
Ethernet is emerging for sensor 
fusion

	■ Factory automation: GigE Vision 
and PoE cameras are widely 
used for scalability and ease of 
deployment

	■ Embedded AI: MIPI CSI is 
preferred in Edge devices where 
power efficiency and direct SoC 
integration are priorities

	■ High-speed imaging: USB3 
Vision and 10GigE Vision are 
favored for high-resolution, high-
frame-rate cameras

Selecting the right machine vision 
interface involves balancing factors 
such as bandwidth, latency, cable 
length, power requirements, and 
environmental conditions. GMSL 

excels in real-time, high-speed 
applications, while Ethernet-based 
solutions provide flexibility and 
scalability. USB3 Vision offers 
simplicity and high bandwidth for 
close-range applications, whereas 
MIPI CSI is ideal for embedded 
systems. Understanding these 
trade-offs allows engineers 
to optimize vision systems for 
specific industrial and research 
applications.

Conclusion: the future of 
computer and machine 
vision

Machine and computer vision 
have evolved from early rule-based 
image processing to AI-powered, 
real-time decision-making systems 
that now underpin automation 
across industries. The integration 
of deep learning, Edge computing, 
and advanced sensing technologies 
has pushed machine vision beyond 
traditional applications, enabling 
more sophisticated perception and 
analysis at unprecedented speeds 
and accuracy.

Looking ahead, the next phase 

of computer and machine 
vision will focus on optimizing 
efficiency, adaptability, and real-
time processing. Engineers will 
play a critical role in advancing 
neuromorphic vision systems, 
enhancing federated learning 
for distributed AI models, and 
developing low-power, high-
performance vision architectures. 
Improving interoperability between 
vision systems and automation 
platforms will also be crucial, as 
industries demand more seamless 
integration between AI-driven vision 
and broader industrial ecosystems.

As the technology continues 
to mature, the engineering 
challenges will shift from 
feasibility to refinement – 
reducing computational overhead, 
improving adaptability in dynamic 
environments, and ensuring robust 
performance across diverse 
conditions. The future of machine 
vision is not just about seeing 
but understanding, adapting, and 
making intelligent decisions in 
real-time, paving the way for a new 
generation of autonomous and AI-
driven systems.

SoCGMSL
Deserializer

Figure 10: Typical 
GMSL cameras to host 
connection

Machine and computer vision have evolved 
from early rule-based image processing to  
AI-powered, real-time decision-making 
systems that now underpin automation  
across industries.

Understanding computer and machine vision
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Machine vision is a collection of 
technologies that give automated 
equipment (industrial or otherwise) 
high-level understanding of the 
immediate environment from 
images. Without machine-vision 
software, digital images would 
be nothing more than simple 
unconnected pixel collections 
having various color values and 
tone intensities to such equipment. 
Machine vision lets computers 
(typically connected to machine 
controls) detect edges and shapes 
within such images to in turn let 
higher-level processing routines 
identify predefined objects of 
interest. Images in this sense aren’t 
necessarily limited to photographic 

images in the visible spectrum; they 
can also include images obtained 
using infrared, laser, X-ray, and 
ultrasound signals.

One fairly common machine-vision 
application in industrial settings is 
to identify a specific part in a bin 
containing a randomly arranged 
(jumbled) mix of parts. Here, 
machine vision can help pick-
and-place robots automatically 
pick up the right part. Of course, 
recognizing such parts with 
imaging feedback would be 
relatively straightforward if they 
were all neatly arranged and 
oriented the same way on a tray. 
However, robust machine vision 
algorithms can recognize objects 

at different distances from the 
camera (and therefore appearing 
as different sizes at the imaging 
sensor) as well as in different 
orientations.

The most sophisticated machine 
vision systems have enabled new 
and emerging designs far more 
sophisticated than bin picking – 
perhaps no more recognizable 
than in autonomous vehicles, for 
example.

Technologies related to 
machine vision

The term machine vision is 
sometimes reserved to reference 

How machine vision is  
advancing automation now
Written by Jody Muelaner

more established and efficient 
mathematical methods of 
extracting information from 
images. In contrast, the term 
computer vision typically describes 
more modern and computationally 
demanding systems – including 
black-box approaches using 
machine learning or artificial 
intelligence (AI). However, machine 
vision can also serve as a catch-all 
term encompassing all methods of 
high-level information extraction 
from images; in this context, 
computer vision describes its 
underlying theories of operation.

Technologies to extract high-level 
meaning from images abound. 
Within the research community, 
such technologies are often 
considered as distinct from 
machine vision. However, in a 
practical sense, all are different 
ways of achieving machine vision … 
and in many cases, they overlap.

Digital image processing is a 

form of digital-signal processing 
involving image enhancement, 
restoration, encoding, and 
compression. Advantages over 
analog image processing include 
minimized noise and distortion 
as well as the availability of far 
more algorithms. One early image-
enhancement use was correction 
of the first close-range images 
of the lunar surface. This used 
photogrammetric mapping as well 
as noise filters and corrections for 
geometric distortions arising from 
the imaging camera’s alignment 
with the lunar surface.

Digital image enhancement often 
involves increasing contrast 
and may also make geometric 
corrections for viewing angle and 
lens distortion. Compression is 
typically achieved by approximating 
a complex signal to a combination 
of cosine functions – a type of 
Fourier transform known as a 
discrete cosine transform or DCT. 
The JPEG file format is the most 

popular application of DCT. Image 
restoration may also use Fourier 
transforms to remove noise and 
blurring.

Photogrammetry employs some 
kind of feature identification 
to extract measurements from 
images. These measurements 
can include 3D information when 
multiple images of the same 
scene have been obtained from 
different positions. The simplest 
photogrammetry systems measure 
the distance between two points 
in an image employing a scale. 
Including a known scale reference 
in the image is normally required 
for this purpose.

Feature detection lets computers 
identify edges and corners 
or points in an image. This 
is a required first step for 
photogrammetry as well as the 
identification of objects and 
motion. Blob detection can 
identify regions with edges that 

Figure 1: Use of machine vision for more sophisticated robotics applications is on the rise. 
 Image source: John6863373 | Dreamstime.com

Figure 2: Machine vision gives systems (industrial or otherwise) high-level 
understanding of an environment setting from images. Image source: Wikimedia

Figure 3: The DLPC350 integrated 
circuit (IC) controller provides input and 
output trigger signals for synchronizing 
displayed patterns with a camera. It 
works with digital micromirror devices 
(DMDs) designed to impart 3D machine 
vision to industrial, medical, and 
security equipment. In fact, applications 
include 3D scanning as well as 
metrology systems. Image source: 
Texas Instruments
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are too smooth for edge or corner 
detection.

Pattern recognition is used 
to identify specific objects. At 
its simplest, this might mean 
looking for a specific well-defined 
mechanical part on a conveyor.

3D reconstruction determines 
the 3D form of objects from 2D 
images. It can be achieved by 
photogrammetric methods in which 
the height of common features 
(identified in images from different 
observation points) are determined 
by triangulation. 3D reconstruction 
is also possible using a single 2D 
image; here, software interprets 
(among other things) the geometric 
relationships between edges or 
regions of shading.

A human can mentally reconstruct 
a cube from a simple line-art 
representation with ease – and 
a sphere from a shaded circle. 
Shading gives indication of the 
surfaces’ slopes. However, the 
process of such deduction is more 
complicated than it seems because 
shading is a one-dimensional 
parameter while slope occurs in 
two dimensions. This can lead to 
ambiguities – a fact demonstrated 
by art depicting physically 
impossible objects.

How machine-vision tasks 
are ordered

Many machine-vision systems 
progressively combine the above 
techniques by starting with 

low-level operations and then 
advancing one by one to higher-
level operations. At the lowest level, 
all of an image’s pixels are held as 
high-bandwidth data. Then each 
operation in the sequence identifies 
image features and represents 
information of interest with 
relatively small amounts of data.

The low-level operations of image 
enhancement and restoration come 
first, followed by feature detection. 
Where multiple sensors are used, 
low-level operations may therefore 
be carried out by distributed 
processes dedicated to individual 
sensors. Once features in individual 
images are detected, higher-level 
photogrammetric measurements 
can occur – as can any object 
identification or other tasks relying 
on the combined data from multiple 
images and sensors.

Direct computations and 
learning algorithms

A direct computation in the 
context of machine vision is a set 
of mathematical functions that 
are manually defined by a human 
programmer. These accept inputs 
such as image pixel values to yield 
outputs such as an object’s edges’ 
coordinates. In contrast, learning 
algorithms aren’t directly written 
by humans but are instead trained 
via example datasets associating 
inputs with desired outputs. They, 
therefore, function as black boxes. 
Most all such machine learning 
now employs deep learning based 
on artificial neural networks to 
make its calculations.

Simple machine learning for 
industrial applications is often more 
reliable and less computationally 
demanding if based on direct 
computation. Of course, there are 
limits to what can be achieved with 

direct computation. For example, 
it could never hope to execute 
the advanced pattern recognition 
required to identify individuals by 
their faces, especially not from 
a video feed of a crowded public 
space. In contrast, machine 
learning deftly handles such 
applications. No wonder then that 
machine learning is increasingly 
being deployed for lower-level 
machine-vision operations 
including image enhancement, 
restoration, and feature detection.

Improving teaching 
approaches (not algorithms)

The maturing of deep-learning 
technology has made apparent 
that it’s not learning algorithms 
themselves needing improvement 
but the way they’re trained. One 
such improved training routine 
is called data-centric computer 
vision. Here, the deep-learning 
system accepts very large training 
sets made of thousands, millions, 
or even billions of images – and 
then stores resultant information 
its algorithms extract from each 
image. The algorithms effectively 
learn by practicing worked 
examples and then referring to an 
‘answer book’ to verify whether they 
arrived at the right values.

Figure 4: 3D scanners capture 2D images of an object to create a 3D model of it. In 
some cases, the digital models are then employed to 3D print copies. Image source: 
Shenzhen Creality 3D Technology Co.

An old story about the early days of 
digital pattern recognition serves as 
a cautionary tale. The U.S. military 
intended to use machine vision for 
target recognition, and defense-
contractor demonstrations reliably 
identified U.S.-made and Russian-
made tanks. Various tanks were all 
correctly differentiated from the 
supplier’s aerial photographs, one 
after the other. But when tested 
again with the Pentagon’s own 
library of pictures, the system kept 
giving wrong answers. The problem 
was that the defense contractor’s 
images all depicted U.S. tanks 
in deserts and Russian tanks in 
green fields. Far from recognizing 
different tanks, the system was 
instead recognizing different-
colored backgrounds. The moral? 
Learning algorithms need to be 
presented with carefully curated 
training data to be useful.

Conclusion: vision for 
robotic workcell safety

Machine vision is no longer a 
niche technology. It’s seeing the 
most increased deployment in 
industrial applications. Here, the 
most dramatic development is how 
machine vision now complements 
industrial-plant safety systems 
that sound alarms or issue audio 

announcements when plant 
personnel enter a working zone 
without a hard hat, mask, or other 
correct protective equipment. 
Machine vision can also complete 
systems that announce when 
mobile machinery such as forklifts 
get too close to people.

These and similar machine-vision 
systems can sometimes replace 
hard guarding around industrial 
robots to enable more efficient 
operations. They can also replace 
or enhance safety systems based 
on light guards that simply stop 
machinery if a plant worker 
enters a workcell. When machine 
vision monitors the factory floor 
surrounding the workcell, it is 
possible for robots in such cells 
to gradually slow down as people 
approach.

As the designs of industrial 
settings evolve to accommodate 
collaborative robots and other 
workcell equipment that are 
safe for plant personnel to move 
around (even while that equipment 
operates) these and other systems 
based on machine vision will 
become a much more common 
part of factory processes.

Figure 6: Image sensors from the iVu 
series can identify workpieces by type, 
size, location, orientation, and coloring. 
The machine-vision components can 
accept configuration and monitoring 
an integrated screen, remote HMI, or 
PC. Camera, controller, lens, and light 
are all pre-integrated. Image source: 
Banner Engineering Corp.

Figure 5: 
Computerized 
determination of 
a workpiece’s 3D 
form from a 2D 
image is fraught 
with challenges.

How machine vision is advancing automation now
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