
1
we get technical

We get
technical
How to implement a
voice user interface on
resource-constrained
MCUs

How single-board
computers extend
the reach of industrial
automation

A guide for the ESP32
microcontroller series

How to perform firmware
updates without halting
firmware execution

Embedded and MCUs I Volume 16

2 3
we get technical

2

co
nt

en
ts

Editor’s note
Embedded systems and microcontrollers (MCUs)
form the backbone of modern electronics, driving
innovation across industries from industrial
automation and automotive to consumer electronics
and IoT. As embedded technology evolves, engineers
must navigate a landscape of increasing complexity,
balancing power efficiency, performance, and security
while meeting the growing demands for connectivity
and real-time processing.

One of the biggest shifts in embedded development
today is the integration of AI and machine learning
at the edge. The rise of MCUs with dedicated AI
acceleration is enabling real-time inferencing in
applications such as predictive maintenance, machine
vision, and intelligent automation. Engineers now
have access to hardware platforms that can perform
complex computations locally, reducing the need for
cloud reliance while improving latency and security.

Another key trend is the ongoing push towards
RISC-V architecture. As an open-source alternative
to proprietary instruction set architectures, RISC-V
is gaining traction among developers looking for
customization, scalability, and cost-effective solutions.
This shift is reshaping the embedded industry, offering
engineers new opportunities to design tailored
solutions while fostering innovation through open
collaboration.

Security remains a critical concern, particularly as
more embedded systems become connected. From
secure boot and hardware root of trust to post-
quantum cryptography, the demand for robust security
frameworks is growing. Engineers must consider not
just performance and efficiency but also long-term
resilience against emerging cybersecurity threats.

This ebook explores the latest advancements in
embedded systems and MCUs, offering insights into
how engineers can harness cutting-edge technology to
develop next-generation applications.

4
How to implement a voice user
interface on resource-constrained
MCUs

10
The co-processor architecture: an
embedded system architecture
for rapid prototyping

20
How single-board computers
extend the reach of industrial
automation

24
Getting started with the
Raspberry Pi Pico multicore
microcontroller board
using C

28 A guide for the ESP32
microcontroller series

34
Special feature: retroelectro
The birth of the microprocessor
and Chuck Peddle

44
How to select and use an audio
codec and microcontroller for
embedded audio feedback files

50
How to perform firmware
updates without halting firmware
execution

54
How to implement Time
Sensitive Networking to ensure
deterministic communication

4 5
we get technical

Smart speakers and other
connected hubs form the heart of
the smart home, allowing users
to control devices and access the
Internet. Two trends are apparent
as these devices proliferate: users
prefer voice control over button
presses or complicated menu
systems, and there is increasing
discomfort with continuous Cloud
connectivity because of privacy
concerns.

However, a robust and secure
voice user interface (VUI) typically

How to implement a voice
user interface on resource-
constrained MCUs
Written by DigiKey’s North
American Editors

with a computer, smartphone,
home automation system, or other
device using voice commands.
After early engineering challenges,
the technology has matured into a
reliable control interface and is now
widely used in smart speakers and
other smart home devices. The key
benefit of a VUI is its convenience:
instant control from anywhere

within voice range with no need to
use a keyboard, mouse, buttons,
menus, or other interfaces to input
commands (Figure 1).

The downside of a VUI is its
complexity. Conventional
technology is based on the lengthy
training of a model with specific
words or phrases. But natural
language processing is word-order
independent, which demands
considerable development work
and significant computing power
to run in real-time. This has slowed
the broader adoption of VUIs.

Now, a new technique simplifies
VUI software to the extent that
it can run on small, efficient
microcontrollers (MCUs) such
as Arm Cortex-M devices. This
technique relies on the fact that
all words in each spoken language
are made up of linguistic sounds
called phonemes. There are far
fewer phonemes than words;
English has 44, Italian has 32, and
the traditional Hawaiian language

Figure 1: VUI
technology has been
widely adopted in
homes and smart
buildings because
it is convenient
and flexible. Image
source: Renesas

Figure 2: Representing
words using phonemes
demands fewer
microcontroller
resources. Image
source: Renesas

4

demands powerful hardware
and complex software for voice
recognition. Anything less will likely
result in poor performance and
unsatisfactory user experiences.
Also, many smart speakers and
hubs are battery powered, so a VUI
must be achieved within a tight
power budget. Such an ambitious
project can be daunting for a
developer lacking experience with
voice interfaces.

Chip makers are responding by
introducing a technique based

on phonemes that significantly
reduces the processing
requirements. The result is highly
accurate and efficient VUI software
that can run on familiar 32-bit
microcontrollers (MCUs) and is
supported by easy-to-use design
tools.

This article describes VUI
challenges and use cases. It then
introduces commercial, easy-to-
use MCU application software and
local phoneme-based VUI software
for connected home applications.
The article concludes by showing
developers how to get started on
VUI projects using Renesas MCUs,
VUI software, and evaluation kits.

The challenges of building
a VUI

A VUI is speech recognition
technology that enables interaction

https://www.digikey.co.uk/en/supplier-centers/arm
https://www.digikey.com/en/supplier-centers/interlink-electronics
https://www.digikey.co.uk/en/supplier-centers/renesas-electronics-america

6 7
we get technical

has just 14. If a VUI uses an English
command set of 200 words, each
word could be broken down into its
associated phonemes from the set
of 44.

Within VUI software, each phoneme
could then be identified by a
numeric code (or a ‘token’), with
the various tokens forming the
language. Storing words as sounds
requires extensive computational
resources and takes up far more
memory space than phonemes
stored as tokens. Processing
phoneme tokens (and
thus command words) in
an expected order further
simplifies computation and
makes it possible to run
VUI software locally on a
modest MCU (Figure 2).

This means that the
software efficiencies
achieved by using phonemes
allow the processing to run
locally. Removing the need
for Cloud processing means
there is no requirement
for continuous internet
connectivity that introduces
user privacy and data
security concerns.

How to implement a voice user interface on resource-constrained MCUs

DSpotter asks for each command
word or phrase, which the tool
breaks down into phonemes. The
command set and supporting
data for the VUI are then built into
a binary file that the developer
includes in the project along with
the Cyberon library. The library and
the binary file are used together on
the MCU to support the recognition
of the desired speech commands.

The DSpotter tool creates
‘CommandSets’ that can be
logically connected by the
developer’s program to create a VUI
with different levels. This allows
for multi-level commands such as,
‘I’d like the lightbulb set to high,
please’: the command words being
‘lightbulb’, followed by ‘set’, and
‘high’. Each command in a group
has its own index, as does each
command within a level (Figure 3).

The DSpotter library processes
incoming sound and searches
for phonemes that match the
commands in the database. When
it finds a match, it returns with
the index and group numbers.
Such an arrangement allows the
main application code to create
a hierarchical switch statement
to process the command words/
phrases as they come. The
resulting library can be small
enough to fit on an MCU with just
256 kilobytes (Kbytes) of flash
memory and 32 Kbytes of SRAM.
The CommandSet can grow if more
memory is available.

It is important for the developer

Renesas has shown a commercial
VUI software package based on
the phoneme principle as part
of its ecosystem. The software,
called Cyberon DSpotter, creates a
VUI algorithm that is streamlined
enough to run on Renesas RA
series MCUs featuring Arm
Cortex-M4 and M33 cores.

Developing with Cyberon
DSpotter

Cyberon DSpotter is built on a

Figure 4: The streamlined nature of Cyberon DSpotter requires that commands
follow a logical sequence, or they won’t be recognized. Image source: Renesas

Figure 5: The R7FA4W1AD2CNG MCU provides ample resources to build a non-
Cloud VUI for applications like a smart light switch. Image source: Renesas

Figure 3: The DSpotter tool allows
the creation of ‘CommandSets’ that
can be logically connected by the
developer’s program to create a VUI
with different levels. Image source:
Renesas

to appreciate that there are
limitations to the phoneme
method for a VUI. The relatively
limited resources of the MCU
dictate that Cyberon DSpotter is
speech recognition rather than
voice recognition. This means the
software cannot perform natural
language processing. Hence, if
the command words don’t follow
a logical sequence (for example,
‘high’, ‘lightbulb’, ‘set’ instead of
‘lightbulb’, ‘set’, ‘high’), the system
won’t recognize the command and
will reset back to the top level.

One design suggestion is to add
a visual indicator to the VUI (for
example, an LED) to indicate when
the processor assumes it is at
the top level of the CommandSet,
prompting the user to reissue the
command in the logical sequence
(Figure 4).

Running a non-Cloud VUI
with restricted resources

The efficiency of Cyberon DSpotter
allows it to run on Renesas’ RA2,
RA4, and RA6 families of Arm
Cortex-M MCUs. These are popular

library of phonemes and phoneme
combinations. This is an alternative
approach to the traditional and
computing-heavy training of
algorithms to recognize specific
words. To break down words into
phonemes and then represent them
as tokens, the developer can use
the DSpotter Modeling Tool.

DSpotter is embedded (non-Cloud)
software that works as a local voice
trigger and command-recognition
solution with robust noise
reduction. It consumes minimal
resources and is highly accurate.
Depending on the selected MCU,
secure data transfer can also be
implemented.

https://www.cyberon.com.tw/solution.php?page=s_2&lang=en
https://www.cyberon.com.tw/solution.php?page=s_2&lang=en
https://www.digikey.co.uk/en/product-highlight/r/renesas/ra-mcu-family

8 9
we get technical

across a wide range of consumer,
industrial, and IoT applications.
They are supported by easy-to-use
design tools, making it relatively
straightforward to build a simple
VUI without extensive coding
experience or in-house expertise.

The choice of a particular RA
family MCU primarily comes down
to the complexity of commands
and the Cyberon library’s size. A
smart light switch, which requires a
modest command set and limited
computing power to operate
effectively, could be based on the
R7FA4W1AD2CNG from the RA4
family. This MCU has a battery-
friendly 48-megahertz (MHz) Arm
Cortex-M4 core supported by
512 Kbytes of flash memory and
96 Kbytes of SRAM. It features
a segment LCD controller, a
capacitive touch sensing unit,
Bluetooth Low Energy (Bluetooth
LE) wireless connectivity, USB
2.0 Full-Speed, a 14-bit analog-to-
digital converter (ADC), a 12-bit
digital-to-analog converter (DAC),
plus security and safety features
(Figure 5).

A more extensive Cyberon DSpotter
library and a more powerful core
are needed for an application such
as a smart speaker. A suitable
candidate is the R7FA6M4AF3CFM.
This MCU from the RA6 family

features the more powerful
200 MHz Arm Cortex-M33 core
supported by 1 megabyte (Mbyte)
of flash memory and 256 Kbytes of
SRAM. It has a CAN bus, Ethernet,
I²C, LIN bus, a capacitive touch
sensing unit, and many other
interfaces and peripherals.

The RA4 and RA6 families are
supported by evaluation boards,
the RTK7EKA4W1S00000BJ and
the RTK7EKA6M4S00001BE,
respectively, to allow a developer
to exercise the MCUs’ capabilities.
Each evaluation board has the
target MCU and an onboard
debugger.

Renesas also offers a VUI solution
kit to accelerate development.
The kit is similar to the evaluation
boards in that it incorporates the
target device and debuggers.
The board also features several
I/O interfaces and has four
microphones: two analog and two
digital.

Access to the software needed
for development with the VUI
solution kit is available on
Cyberon’s website. This includes
complimentary Cyberon DSpotter
Modeling Tool access and features
an e2 studio project with a working
voice CommandSet (e2 studio
is an Eclipse-based integrated

development environment (IDE)
for Renesas MCUs). The example
CommandSet can be used as a
template for developing custom
voice command sequences. The
system’s reactions can then be
monitored using a terminal window.
It generally takes about 15 minutes
to create the VUI structure shown in
Figure 4.

More sophisticated application
software design for the Cyberon
package is supported by the
company’s Renesas Flexible
Software Package (FSP) for
embedded system designs using
the RA families. The FSP is based
on an open software ecosystem
and includes Azure RTOS or
FreeRTOS, legacy code, and third-
party ecosystems. It can run in
several IDEs, including e2 studio.

How well does the VUI
perform?

It is one thing for a VUI to perform
well in a quiet laboratory, but quite
another for it to work accurately
with significant background noise.
A typical operating environment for
a smart speaker could include a TV
or radio, conversation, other music
sources, and the general hubbub of
a household or a social gathering.
Moreover, the VUI will have to
contend with dialects and less-
than-perfect diction. Despite these
challenges, users expect almost
flawless performance.

SNR Background
Noise Distance Hit-rate Alexa Requirements

(Clean) none 1.5 m 100.00% 90%

(Clean) none 3 m 100.00% 90%

10 dB Babble 1.5 m 98.55% 80%

10 dB Babble 3 m 98.84% 80%

10 dB Music 1.5 m 98.26% 80%

10 dB Music 3 m 98.55% 80%

10 dB TV 1.5 m 98.84% 80%

10 dB TV 3 m 98.55% 80%

5 dB Babble 1.5 m 98.84% 80%

5 dB Babble 3 m 96.24% 80%

5 dB Music 1.5 m 98.84% 80%

5 dB Music 3 m 97.08% 80%

5 dB TV 1.5 m 93.37% 80%

5 dB TV 3 m 90.72% 80%

Table 1: Command success test results for a Cyberon-powered VUI with various sources of background
noise. In all cases, the VUI outperformed the Amazon Alexa benchmark. Image source: Renesas

It is one thing for a VUI to perform well in a
quiet laboratory, but quite another for it to work
accurately with significant background noise.

To improve performance in a
difficult listening environment,
Cyberon DSpotter software running
on the Renesas RA family of MCUs
includes noise immunity features
that require minimal processor
resources. To demonstrate its
efficacy, tests were done with a
Cyberon DSpotter VUI listening to
commands while subject to various
background noise sources at 1.5-

and 3-meter (m) distances, and
with signal-to-noise ratios (SNRs)
of 0, 5, and 10 decibels (dB). In all
cases, the VUI outperformed the
Amazon Alexa benchmark (Table
1).

Conclusion

VUIs are rapidly becoming the
preferred consumer control

interface for smart products.
A speech control approach
using phonemes as the basis of
commands and a strict command
structure can dramatically
reduce memory and computing
requirements, allowing the
technology to run locally on small,
resource-constrained MCUs.

How to implement a voice user interface on resource-constrained MCUs

https://www.digikey.co.uk/en/products/detail/renesas-electronics-america-inc/R7FA4W1AD2CNG-AA0/12142164
https://www.digikey.co.uk/en/products/detail/renesas-electronics-america-inc/R7FA6M4AF3CFM-AA0/13160536
https://www.digikey.co.uk/en/products/detail/renesas-electronics-america-inc/RTK7EKA4W1S00000BJ/12142161
https://www.digikey.co.uk/en/products/detail/renesas-electronics-america-inc/RTK7EKA6M4S00001BE/13160535
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp

10 11
we get technical

Written By Noah Madinger, Colorado Electronic Product
Design (CEPD)

The co-processor
architecture: an embedded
system architecture for rapid
prototyping

Introduction

The embedded systems designer
finds themselves at a juncture of
design constraints, performance
expectations, and schedule and
budgetary concerns. Indeed, even
the contradictions in modern
project management buzzwords
and phrases further underscore
the precarious nature of this
role: ‘fail fast’; ‘be agile’; ‘future-
proof it’; and ‘be disruptive!’. The
acrobatics involved in even trying
to satisfy these expectations

can be harrowing, and yet, they
have been spoken and continue
to be reinforced throughout the
market. What is needed is a design
approach, which allows for an
evolutionary iterative process to
be implemented, and just like with
most embedded systems, it begins
with the hardware architecture.

The co-processor architecture, a
hardware architecture known for
combining the strengths of both
microcontroller unit (MCU) and
field programmable gate array
(FPGA) technologies, can offer
the embedded designer a process
capable of meeting even the most
demanding requirements, and yet it
allows for the flexibility necessary
to address both known and
unknown challenges. By providing
hardware capable of iteratively
adapting, the designer can
demonstrate progress, hit critical
milestones, and take full advantage
of the rapid prototyping process.

Within this process are key
project milestones, each with their
own unique value to add to the
development effort. Throughout
this article, these will be referred
to by the following terms: The
Digital Signal Processing with the

Microcontroller milestone, the
System Management with the
Microcontroller milestone, and the
Product Deployment milestone.

By the conclusion of this article,
it will be demonstrated that a
flexible hardware architecture
can be better suited to modern
embedded systems design than a
more rigid approach. Furthermore,
this approach can result in
improvements to both project cost
and time to market. Arguments,
provided examples, and case
studies will be used to defend this
position. By observing the value of
each milestone within the design
flexibility that this architecture
provides, it becomes clear that an
adaptive hardware architecture
is a powerful driver in pushing
embedded systems design forward.

Exploring the strengths
of the co-processor
architecture: design
flexibility and high-
performance processing

A common application for FPGA
designs is to interface directly
with a high-speed analog-to-digital
converter (ADC). The signal is

digitized, read into the FPGA, and
then some digital signal processor
(DSP) algorithms are applied to this
signal. Last of all, the FPGA then
makes decisions based upon the
findings.

Such an application will serve as
the example throughout this article.
Furthermore, Figure 1 illustrates a
generic co-processor architecture,
where the MCU and FPGA are
connected through the MCU’s
external memory interface. The
FPGA is treated as if it were a piece
of external static random-access
memory (SRAM). Signals come
back to the MCU from the FPGA
and serve as hardware interrupt
lines and status indicators. This
allows the FPGA to indicate
critical states to the MCU, such
as communicating that an ADC
conversion is ready, or a fault has
occurred, or another noteworthy
event has happened.

The strengths of the co-processor
approach are probably best seen
within the deliverables of each of
the above-mentioned milestones.
Value is assessed by not only
listing the accomplishments
of a task or phase but also by
assessing the enablement that
these accomplishments allow. The
answers to the following questions
assist in assessing the overall value
of a milestone’s deliverables:

 ■ Can the progress of other
team members now more
rapidly continue, as project
dependencies and bottlenecks
are removed?

Editor’s note: although well
known for its digital processing
performance and throughput,
the co-processor architecture
provides the embedded systems
designer opportunities to
implement project management
strategies, which improve
both development costs and
time to market. This article,
focused specifically upon
the combination of a discrete
microcontroller (MCU) and a
discrete field programmable gate

array (FPGA), showcases how
this architecture lends itself to
an efficient and iterative design
process. Leveraging researched
sources, empirical findings, and
case studies, the benefits of
this architecture are explored,
and exemplary applications are
provided. Upon this article’s
conclusion, the embedded
systems designer will have a
better understanding of when and
how to implement this versatile
hardware architecture.

Figure 1: Generic co-processor diagram (MCU + FPGA). Image source: CEPD

12 13
we get technical

Built upon the lesson learned from
the MCU’s implementation, the
designer carries this confidence
forward into this next milestone.
Tools, such as the aforementioned
Vivado HLS from Xilinx, provide
a functional translation from
the executable C/C++ code to
synthesizable HDL. Now, timing
constraints, process parameters,
and other user preferences must
still be defined and implemented,
however, the core functionality is
persevered and translated to the
FPGA fabric.

For this milestone, the MCU’s
role is that of a system manager.
Status and control registers within
the FPGA are monitored, updated,
and reported on by the MCU.
Furthermore, the MCU manages
the user interface (UI). This UI
could take the form of the web
server accessed over an Ethernet
or Wi-Fi connection, or it could be
an industrial touchscreen interface
giving access to users at the point

the product’s processes

2. Having been first developed
and validated within the
MCU, algorithmic risks have
been mitigated, and these
mitigations are translated over
into synthesizable HDL. Tools,
such as Vivado HLS, make this
translation an easier process.
Furthermore, FPGA-specific
risks can be mitigated through
integrated simulation tools,
such as the Vivado design suite

3. Stakeholders are not exposed
to significant risk by moving the
processes over to the FPGA.
On the contrary, they get to see
and enjoy the benefits that the
FPGA’s speed and parallelism
provide. Measurable
performance improvements are
observed and focus can now be
given to readying this design for
manufacturing

 ■ How do the accomplishments
of the milestone enable further
parallel execution paths?

The digital signal
processing with the
microcontroller milestone

The first development stage
that this hardware architecture
allows places the MCU front and
center. All things being equal,
MCU and executable software
development is less resource and
time-consuming than FPGA and
hardware descriptive language
(HDL) development. Thus, by
initiating product development with
the MCU as the primary processor,
algorithms can be implemented,
tested, and validated more rapidly.
This allows algorithmic and logical
bugs to be discovered early in
the design process, and this also
allows for substantial portions of
the signal chain to be tested and
validated.

The FPGA’s role in this initial
milestone is to serve as a high-
speed data gathering interface. Its
task is to reliably pipe data from
the high-speed ADC, alert the MCU
that data is available, and present
this data on the MCU’s external
memory interface. Although this
role does not include implementing
HDL-based DSP processes or other
algorithms, it is nonetheless highly
critical.

The FPGA development performed
at this phase lays the foundation for
the product’s ultimate success both

within the product development
efforts and upon release to the
market. By focusing on just the
low-level interface, adequate time
can be dedicated to testing these
essential operations. Only once the
FPGA is reliably and confidently
performing this interfacing role,
can this milestone be concluded
confidently.

Key deliverables from this initial
milestone include the following
benefits:

1. The full signal path – all
amplifications, attenuations,
and conversions – will have
been tested and validated

2. The project development
time and effort will have
been reduced by initially
implementing the algorithms
in software (C/C++); this
is of considerable value
to management and other
stakeholders, who must see the
feasibility of this project before
approving future design phases

3. The lessons learned
from implementing the
algorithms in C/C++ will be
directly transferable to HDL
implementations – through the
use of software-to-HDL tools,
e.g., Xilinx HLS

The system management
with the microcontroller
milestone

The second development stage,
which this co-processor approach
offers, is defined by the moving
of DSP processes and algorithm
implementations from the MCU
to the FPGA. The FPGA is still
responsible for the high-speed ADC
interface, however, by assuming
these other roles, the speed and
parallelism offered by the FPGA
are fully utilized. Additionally, unlike
the MCU, multiple instances of
the DSP processes and algorithm
channels can be implemented and
run simultaneously.

Figure 4: Application program, host processor, and FPGA-based hardware
- used in satellite communications example.

of use. The key takeaway from
the MCU’s new, more refined role
is this: by being relieved from
the computationally intensive
processing tasks, both the MCU
and FPGA are now being leveraged
in tasks for which they are well
suited.

Key deliverables form this
milestone and include these
benefits:

1. Fast, parallel execution of
DSP processes and algorithm
implementations are being
provided by the FPGA.The MCU
provides a responsive and
streamlined UI and manages

Figure 3: Architecture – system management with
the microcontroller. Image source: CEPD

The co-processor architecture: an embedded system architecture for rapid prototyping

Figure 2: Architecture – digital signal processing with the
microcontroller. Image source: CEPD

https://www.digikey.co.uk/en/design-services-providers/cepd-inc

14 15
we get technical

Figure 6: Infotainment FPGA co-processor architecture example 2.

The product deployment
milestone

With the computationally intensive
processing being addressed within
the FPGA, and the MCU handling
its system management and user
interface roles, the product is ready
for deployment. Now, this paper
does not advocate for bypassing
Alpha and Beta releases; however,
the emphasis for this milestone
are the capabilities that the co-
processor architecture provides to
product deployment.

Both the MCU and FPGA are
field updateable devices. Several
advancements have been made
to make FPGA updates just as
accessible as software updates.
Moreover, since the FPGA is within
the addressable memory space of
the MCU, the MCU can serve as the
access point for the entire system:
receiving both updates for itself
as well as for the FPGA. Updates
can be conditionally scheduled,
distributed, and customized on
a per end-user basis. Last of all,
user and use-case logs can be
maintained and associated with
specific build implementations.
From these data sets, performance
can continue to be refined and
enhanced even after the product is
in the field.

Perhaps the strengths of this
total-system updatability are
no more underscored than in
space-based applications. Once a
product is launched, maintenance
and updates must be performed

these sections over to HDL
implementation. The graphical
representation is highly similar
to what has been presented so
far, however, they have chosen to
represent the Application Program
as its own independent block, as it
can be either realized in the Host
(Processor) or in the FPGA based
Hardware.

By utilizing a peripheral component
interconnect (PCI) interface
and the host processor’s direct
memory access(DMA), peripheral
performance is dramatically
increased. This is mostly observed
within the improvements for the
Derandomization process. When
this process was performed in the
host processor’s software, there
was clearly a bottleneck in the
real-time response of the system.
However, when moved to the
FPGA, the following benefits were
observed:

 ■ The Derandomization process
executed in real-time without

causing bottlenecks
 ■ The host processor’s

computational overhead was
significantly reduced, and it
could now better perform a
desired logging role

 ■ The total performance of the
entire system was scaled up

All of this was achieved without
the costs associated with an ASIC,
and while enjoying the flexibility
of programmable logic [5].
Satellite communications present
considerable challenges, and this
approach can verifiably meet these
requirements, and
continue to provide
design flexibility.

Automotive infotainment
example

Entertainment systems within
automobiles are distinguishing
features for discerning consumers.
Unlike a majority of automotive
electronics, these devices are
highly visible and are expected
to provide exceptional response
time and performance. However,
designers are often squeezed
between the current needs of the
design and the flexibility, which
future features will require. For this
example, the implementation needs
of signal processing and wireless
communications will be used to
highlight the strengths of the co-
processor hardware architecture.

One of the predominant automotive
entertainment system architectures
used was published by the Delphi
Delco Electronics Systems
corporation. This architecture
employed an SH-4 MCU with
a companion ASIC, Hitachi’s
HD64404 Amanda peripheral. This

The co-processor architecture: an embedded system architecture for rapid prototyping

Supporting research and
related case studies

Satellite communications example

In short, the value of a co-
processor is to offload the primary
processing unit so that tasks are
executed upon hardware, in which
accelerations and streamlining
can be taken advantage of. The
advantage of such a design choice
is a net increase in computational
speed and capabilities, and, as
this article argues, a reduction in
development cost and development
time. Perhaps one of the most
compelling realms for these
benefits is in the area of space
communications systems.

In their publication, FPGA based
hardware as coprocessor, G.
Prasad and N. Vasantha detail
how data processing within an
FPGA blends the computational
needs of satellite communications
systems without the high non-
recurring engineering (NRE)
costs of application-specific
integrated circuits (ASICs) or the
application-specific limitations
of a hard-architecture processor.
Just as was described in the
Digital Signal Processing with the
Microcontroller Milestone, their
design begins with the application
processor performing a majority
of the computationally intensive
algorithms. From this starting point,
they identify the key sections of
software that consume a majority
of the central processing unit
(CPU) clock’s cycles and migrate

remotely. This could be as simple
as changing logical conditions,
or as complicated as updating
a communications modulation
scheme. The programmability
offered by FPGA technologies
and the co-processor architecture
can accommodate the entirety
of this range of capabilities, all
while offering radiation-hardened
component choices.

The final key takeaway from this
milestone is progressive cost
reduction. Cost reductions, bill
of materials (BOM) changes, and
other optimizations can also occur
at this milestone. During field
deployments, it may be discovered
that the product can operate just
as well with a less expensive MCU,
or less capable FPGA. Because
of the co-processor, architecture
designers are not stuck using
components whose capabilities
exceed their application’s
needs. Furthermore, should a
component become unavailable,
the architecture allows for new
components to be integrated
into the design. This is not the
case with a single-chip, system
on a chip (SoC) architecture, or
with a high-performance DSP
or MCU that attempts to handle
all of the product’s processing.
The co-processor architecture
is a good mix of capability and
flexibility giving the designer more
choices and freedoms both with
the development phases and upon
release to the market.

Figure 5: Infotainment FPGA co-processor architecture
example 1.

16 17
we get technical

communications stack. As both the
Amanda and FPGA have access
to the external memory, data can
be rapidly exchanged among
the system’s processors and
components.

The second infotainment in Figure
6 highlights the FPGA’s ability to
address both the incoming high-
speed analog data and the handling
of the compression and encoding
needed for video applications. In
fact, all of this functionality can be
pushed into the FPGA and through
the use of parallel processing,
these can all be addressed in real-
time.

By including an FPGA within an
existing hardware architecture,

the proven performance of the
existing hardware can be coupled
with flexibility and futureproofing.
Even within existing systems, the
co-processor architecture provides
options to designers, which would
otherwise not be available [6].

Rapid prototyping
advantages

At its heart, the rapid prototyping
process strives to cover a
substantial amount of product
development area by executing
tasks in parallel, identifying
‘bugs’ and design issues quickly,
and validating data and signal
paths, especially those within a
project’s critical path. However,
for this process to truly produce
streamlined, efficient results there
must be sufficient expertise in the
project areas required.

Traditionally, this means that
there must be a hardware
engineer, an embedded software
or DSP engineer, and an HDL
engineer. Now, there are plenty
of interdisciplinary professionals,
who may be able to satisfy
multiple roles; however, there is
still substantial project overhead
involved in coordinating these
efforts.

In their paper, An FPGA based rapid
prototyping platform for wavelet
coprocessors, the authors promote
the idea that using a co-processor
architecture allows a single DSP
engineer to fulfil all of these roles,
efficiently and effectively. For this

Figure 7: Implementation design flow.

Figure 8: Xilinx Vivado HLS design flow.

Table 1: FPGA algorithm execution optimization findings (latency and
interval).

study, the team began designing
and simulating the desired DSP
functionality within MATLAB’s
Simulink tool. This served two
primary functions, in that it, 1)
verified the desired performance
through simulation, and 2) served
as a baseline to which future design
choices could be compared and
referenced.

After simulation, critical
functionalities were identified and
divided into different cores – these
are soft-core components and
processors that can be synthesized
within an FPGA. The most
important step during this work
was to define the interface among
these cores and components and
to compare the data-exchange
performance against the desired,
simulated performance. This
design process closely aligned with
Xilinx’s design flow for embedded
systems and is summarized in
Figure 7.

By dividing the system into
synthesizable cores, the DSP
engineer can focus upon the
most critical aspects of the signal
processing chain. She/he does not

architecture satisfied over 75% of
the automotive market’s baseline
entertainment functionality;
however, it lacked the ability
to address video processing
applications and wireless
communications. By including
an FPGA within this existing
architecture, further flexibility and
capability can be added to this
already-existing design approach.

The Figure 5 architecture is
suitable for both video processing
and wireless communications
management. By pushing the
DSP functionalities to the FPGA,
the Amanda processor can serve
a system management role and
is freed to implement a wireless

Latency Interval

min max min max

Default (solution 1) 2935 2935 2935 2935
Pipeline inner loop

(solution 2) 1723 1723 1723 1723
Pipeline outer loop

(solution 3) 843 843 843 843
Array partition

(solution 4) 477 477 477 477

Dataflow (solution 5) 476 476 343 343

Inline (solution 6) 463 463 98 98

need to be an expert in hardware or
HDL to modify, route, or implement
different soft-core processors or
components within the FPGA. So
long as the designer is aware of
the interface and the formats of
the data, they have full control over
the signal paths and can refine the
system’s performance.

Empirical findings – the
discrete cosine transform
case study

The empirical findings not only
confirmed the flexibility availed by

the co-processor
architecture to
the embedded
systems
designer but
also showcased

the performance-enhancing
options available with modern
FPGA tools. Enhancements, like
the ones mentioned below, may
not be available or may have
less impact for other hardware
architectures. The discrete cosine
transform (DCT) was selected
as a computationally intensive
algorithm, and its progression from
a C-based implementation to an
HDL-based implementation was
at the heart of these findings. DCT
was chosen since this algorithm
is used in digital signal processing
for pattern recognition and filtering
[8]. The empirical findings were
based upon a laboratory exercise,
which was completed by the author

The co-processor architecture: an embedded system architecture for rapid prototyping

18 19
we get technical

and coworkers, to obtain the Xilinx
Alliance Partner certification for
2020-2021.

The following tools and devices
were used in this effort:

 ■ Vivado HLS v2019
 ■ The device for assessment and

simulation was the xczu7ev-
ffvc1156-2-e

Beginning with the C-based
implementation, the DCT algorithm
accepts two arrays of 16-bit
numbers; array ‘a’ is the input array
to the DCT, and array ‘b’ is the
output array from the DCT. The data
width (DW) is therefore defined as
16, and the number of elements
within the arrays (N) is 1024/DW, or
64. Last of all, the size of the DCT
matrix (DCT_SIZE) is set to 8, which
means an 8 x 8 matrix is used.

Following the premise of this
article, the C-based algorithm
implementation allows the designer
to quickly develop and validate the
algorithm’s functionality. Although
it is an important consideration,
this validation places functionality
at a higher weighting than
execution time. This weighting
is allowed, since the ultimate
implementation of this algorithm
will be in an FPGA, where hardware

acceleration, loop unrolling, and
other techniques are readily
available.

Once the DCT code was created
within the Vivado HLS tool as a
project, the next step is to begin
synthesizing the design for FPGA
implementation. It is at this next
step where some of the most
impactful benefits from moving
an algorithm’s execution from
an MCU to an FPGA become
more apparent – as a reference
this step is equivalent to the
System Management with the
Microcontroller milestone
discussed above.

Modern FPGA tools allow for
a suite of optimizations and
enhancements that greatly enhance
the performance of complex
algorithms. Before analyzing the
results, there are some important
terms to keep in mind:

 ■ Latency – The number of clock
cycles required to execute all
iterations of the loop [10]

 ■ Interval – The number of clock
cycles before the next iteration
of a loop starts to process data
[11]

 ■ BRAM – Block Random Access
Memory

 ■ DSP48E – Digital Signal

Processing Slice for the
UltraScale Architecture

 ■ FF – Flipflop
 ■ LUT – Look-up Table
 ■ URAM – Unified Random-Access

Memory (can be composed of a
single transistor)

Default

The default optimization setting
comes from the unaltered
result of translating the C-based
algorithm to synthesizable HDL.
No optimizations are enabled, and
this can be used as a performance
reference to better understand the
other optimizations.

Pipeline inner loop

The PIPELINE directive instructs
Vivado HLS to unroll the inner loops
so that new data can start being
processed while existing data
is still in the pipeline. Thus, new
data does not have to wait for the
existing data to be complete before
processing can begin.

Pipeline outer loop

By applying the PIPELINE
directive to the outer loop, the
outer loop’s operations are now
pipelined. However, the inner loops’
operations now occur concurrently.
Both the latency and interval time
are cut in half through applying this
directly to the outer loop.

Array partition

This directive maps the contents
of the loops to arrays and thus
flattens all of the memory access
to single elements within these
arrays. By doing this, more RAM is
consumed, but again, the execution
time of this algorithm is cut in half.

Dataflow

This directive allows the designer
to specify the target number of
clock cycles between each of the
input reads. This directive is only
supported for top-level function.
Only loops and functions exposed
to this level will benefit from this
directive.

Inline

The INLINE directive flattens all
loops, both inner and outer. Both

row and column processes can now
execute concurrently. The number
of required clock cycles is kept to
a minimum, even if this consumes
more FPGA resources.

Conclusion

The co-processor hardware
architecture provides the
embedded designer with a
high-performance platform that
maintains its design flexibility
throughout development and past
product release. By first validating
algorithms in C or C++, processes,
data and signal paths, and critical
functionality can be verified in a
relatively short amount of time.
Then, by translating the processor-
intensive algorithms into the
co-processor FPGA, the designer
can enjoy the benefits of hardware
acceleration and a more modular
design.

Should parts become obsolete,
or optimizations be required, the
same architecture can allow for
these changes. New MCUs and
new FPGAs can be fitted into the
design, all the while the interfaces
can remain relatively untouched.
Additionally, since both the MCU
and FPGA are field updatable, user-
specific changes and optimizations
can be applied in the field and
remotely.

In closing, this architecture blends
the development speed and
availability of an MCU with the
performance and expandability
of an FPGA. With optimizations
and performance enhancements
available at every development
step, the co-processor architecture
can meet the needs of even the
most challenging requirements
– both for today’s designs and
beyond.

Table 2: FPGA algorithm execution optimization findings (resource utilization).

BRAM_18K DSP48E FF LUT URAM

Default (solution) 5 1 246 964 0

Pipeline inner loop (solution 2) 5 1 223 1211 0

Pipeline outer loop (solution 3) 5 8 516 1356 0

Array partition (solution 4) 3 8 862 1879 0

Dataflow (solution 5) 3 8 868 1654 0

Inline (solution 6) 3 16 1086 1462 0

The co-processor hardware architecture
provides the embedded designer with a high-
performance platform that maintains its design
flexibility throughout development and past
product release.

The co-processor architecture: an embedded system architecture for rapid prototyping

20 21
we get technical

How single-board computers
extend the reach of industrial
automation Written by Jeff Shepard

The availability of single-board-
computers (SBCs) like Arduino
and Raspberry Pi, rated for use in
industrial environments together
with software development
tools based on the International
Electrotechnical Commission
(IEC) 61131-3 standard, have
opened new opportunities for
machine and factory automation
designers. Some of these new
SBC-based solutions also open
new possibilities for automating
environmental monitoring, smart
home and building installations,
agricultural applications, and other
non-industrial systems.

Industrial SBCs are being used
in machine controllers, industrial
PCs (IPCs), Industrial Internet
of Things (IIoT) gateways, micro
programmable logic controllers
(PLCs), soft PLCs, analog and
digital input/output (I/O) modules,
and more. These SBC-based
devices are built on open hardware
and open software platforms,
sometimes including full root
rights.

Compliance with IEC 61131-3
means that the five standard
automation programming
languages are supported, including
ladder diagram, structured text,

function block diagram, sequential
function diagram, and instruction
list. Being built using SBCs means
developers can also turn to
languages like Java, Python, C, or
C++, providing greater flexibility
than traditional industrial control
hardware. Some support data
security from the hardware to the
Cloud or a higher-level network like
an enterprise resource planning
(ERP) system with an onboard
secure element and International
Telecommunications Union
(ITU) X.509 Standard public key
compliance.

This article presents examples
of SBC-based solutions available
to machine and automation
designers from Arduino, Industrial
Shields, and KUNBUS for various
applications, including small-
to medium-scale automation,
embedded control in small
machines, and large factory
automation installations. The
article closes with a look at how
PROFINET and deterministic
networking can be implemented on
SBC PLCs.

Arduino PLCs

One of the benefits of most

Arduino-based PLCs is the
availability of the Arduino
PLC integrated development
environment (IDE) for writing
control software. The Arduino PLC
IDE enables users to choose any
of the five programming languages
defined by IEC 61131-3 and quickly
code PLC applications or port
existing ones. It also includes
ready-to-use Arduino sketches
(programs), tutorials, and libraries.

Industrial Shields’ Arduino-based
PLCs can be programmed using
the Arduino IDE or directly using C.
These PLCs include open-source
tools and can be programmed
with multiple software platforms.
They can be programmed through
the USB or Ethernet ports for
remote connections. Users can
continuously monitor the status
of all the variables, inputs, and
outputs.

The model IS.MDUINO.21+ from
Industrial Shields is rated for
operation from 0°C to +60°C, and
its ATmega processor achieves a
throughput of 16 MIPS at 16 MHz
(Figure 1). Features include:

 ■ 13 Inputs:
 ■ 7 opto isolated digital (5 VDC

to 24 VDC)

Figure 1: The model IS.MDUINO.21+ from
Industrial Shields has 13 inputs and 8 outputs.
Image source: Industrial Shields

 ■ 2 Interrupts (5 VDC to 24
VDC)

 ■ 6 software configurable as
analog (0 VDC to 10 VDC, 10
bit) or digital (5 VDC to 24
VDC)

 ■ 8 Outputs:
 ■ 5 opto isolated digital (5 VDC

to 24 VDC)
 ■ 3 software configurable as

analog (0 VDC to 10 VDC, 8
bit), digital (5 VDC to 24 VDC),
or pulse width modulated (5
VDC to 24 VDC)

 ■ 256 KB memory
 ■ Ethernet, RS-232, RS-485 and

USB communications
 ■ Expandable with up to 127

modules

Micro PLCs

The Arduino Opta is a micro
PLC designed to support IIoT
applications. Programmable with
the Arduino PLC IDE, it supports
Arduino sketches and standard PLC
languages. The main processor
is the dual-core STM32H747
with a 480 MHz Cortex M7, a
240 MHz Cortex M4, and 1 MB
program memory that supports
real-time control, monitoring,
and implementation of predictive

maintenance algorithms. Secure
over-the-air (OTA) firmware
updates are supported by the
onboard secure element and X.509
compliance.

Opta PLCs are available in three
variants differentiated by their
communications capabilities. All
three include USB-C. The models
are:

 ■ Opta Lite, model AFX00003, that
adds 10/100BASE-T Ethernet

 ■ Opta RS485, model AFX00001,
that adds 10/100BASE-T
Ethernet and half-duplex RS-485

 ■ Opta Wi-Fi, model AFX00002,
that adds 10/100BASE-T
Ethernet, half-duplex RS-485
802.11 b/g/n Wi-Fi, and Bluetooth
low energy (BLE)

These micro PLCs have eight
programmable analog/digital
inputs and four normally-open relay
outputs rated for 10 A (2.3 kW).
The real-time clock (RTC) has a
typical ten days of power retention
at +25°C, and network time protocol
(NTP) synchronization is available
through the Ethernet port. They
are DIN rail compatible to speed
system integration (Figure 2).

Embedded PLC for small
machines

Designers of small machines for
labelling, forming, and sealing,
carton packing, gluing, electric
ovens, industrial washers and
dryers, mixers, and so on can turn
to the 170 x 90 x 50 millimeters
(mm) Portenta machine control
PLC. It has a DIN bar compatible
housing and push-in terminals for
fast connection and is rated for
operation from -40°C to +85°C
without external cooling (Figure
3). The main processor is the
dual-core STM32H747 with a
480 MHz Cortex M7 and a 240
MHz Cortex M4. The board can
support flat screen displays, touch
panels, keyboards, joysticks, and
mice for installer and operator
interfaces. It can be programmed
using the Arduino PLC IDE or other
embedded development platforms.

The Portenta Machine Control can
support predictive maintenance
and artificial intelligence (AI)
software. Its embedded RTC
supports synchronization of
processes and enables real-time
data collection and remote control
of equipment.

20

Figure 2: Opta Lite Arduino micro PLC
showing the four 10 A relay outputs on
the left front of the unit. Image source:
Arduino

https://www.digikey.co.uk/en/supplier-centers/arduino
https://www.digikey.co.uk/en/supplier-centers/industrial-shields
https://www.digikey.co.uk/en/supplier-centers/industrial-shields
https://www.digikey.co.uk/en/supplier-centers/kunbus
https://www.digikey.co.uk/en/products/detail/industrial-shields/IS-MDUINO-21/11192411
https://www.digikey.co.uk/en/products/detail/arduino/AFX00003/17051272
https://www.digikey.co.uk/en/products/detail/arduino/AFX00003/17051272
https://www.digikey.co.uk/en/products/detail/arduino/AFX00002/17051270
https://www.digikey.co.uk/en/products/detail/arduino/AKX00032/14309534
https://www.digikey.co.uk/en/products/detail/arduino/AKX00032/14309534

22 23
we get technical

It can connect to various external
sensors and actuators with
isolated and programmable digital
and analog I/O connections,
three configuration temperature
channels, and an I2C connector.
Resettable fuses protect all I/Os.
Network connectivity is supported
by USB, Ethernet, Wi-Fi, BLE and
RS-485.

Raspberry Pi for factory
automation

More complex automation tasks
can benefit from the processing
power of Raspberry Pi 4-based
PLCs using the Broadcom
BCM2711B0 processor. Fabricated
on a 28 nanometer (nm) process,
the BCM2711B0 uses the
Cortex-A72 architecture. It has four
cores with a clock speed of 1.5
GHz and 4 GB RAM. It integrates
numerous peripherals, including
timers, interrupt controller, general
purpose I/O (GPIO), USB, PCM/
I2S digital audio interface, direct
memory access (DMA) controller,
I2C masters, serial peripheral
interface (SPI) masters, PWM,

universal asynchronous
receivers/transmitters
(UARTs), dual micro
HDMI ports that support
4K output, and more.

Industrial Shields’
Raspberry Pi Ethernet
PLCs use the
BCM2711B0, operate with
12 VDC to 24 VDC input
voltages, and draw up to

1.5 A of current. They include the
Linux operating system and have
dual Ethernet ports, dual RS-485
ports, Wi-Fi, BLE, and CAN bus
options, making them capable of
connecting with many devices
using multiple protocols and
communications ports. They have
been optimized for applications
that benefit from real-time control
and are available with 2, 4, and 8
GB of RAM. Examples of Industrial
Shields’ Raspberry Pi PLCs include:

 ■ 012003000200, with 4 GB RAM
and 21 I/Os a (Figure 4)

 ■ 012003001100, with 4 GB RAM
and 54 I/Os

 ■ 016003000200, with 4 GB RAM,
21 I/Os, and general packet
radio service (GPRS) cellular
connectivity

Bridging Arduino and
Raspberry Pi in PLCs with
SimpleComm

The SimpleComm C++ library
lets designers send data using
RS-485, RS-482, Ethernet, and
other protocols. It can be adapted
to different communications

topologies like ad-hoc, master-
slave, and client-server. The
original program has an intuitive
application programming interface
(API) for Arduino environments.
Industrial Shields recently adapted
SimpleComm for the Linux
environment found on Raspberry Pi
PLCs.

IPC and IIoT gateway
solution

When greater flexibility is needed,
designers can turn to KUNBUS’
RevPi Core S and SE IPCs and
the RevPi Connect S and SE IIoT
gateway, all based on Raspberry Pi
and designed for DIN rail mounting
(Figure 5). In addition to providing
circuit diagrams, KUNBUS uses
an open-source adaptation of the
Raspberry Pi operating system (OS)
with a real-time operation patch.
The Raspberry Pi OS offers robust
interoperability with a wide range
of software applications developed
for Raspberry Pi. KUNBUS works
with software vendors to support

supervisory control and data
acquisition (SCADA) software
for controlling, monitoring, and
analyzing industrial devices
and processes. The availability
of full root access speeds up
the implementation of custom
programs.

The RevPi Core S and SE are built
on an open hardware and open
software platform that conforms
to the IEC 61131 standard. RevPi
Core S units are compatible with
all KUNBUS expansion modules,
including fieldbus gateways. RevPi
Core SE units are compatible with
KUNBUS I/O modules but don’t
support the fieldbus gateways.
RevPi Core S/SE IPCs have USB,
Micro-USB, Ethernet, and HDMI
connections. They feature a 1.5
GHz quad-core processor with 1 GB
RAM, and models are available with
8, 16, and 32 GB of storage. For
example, model PR100360, RevPi
Core S has 16 GB of memory.

To support IIoT connectivity, the
RevPi Connect S and SE Gateways
are available with up to 32 GB of
memory and include two RJ45
10/100 Ethernet sockets, two USB
ports, a 4-pin RS-485 interface,
plus micro-HDMI, and micro-USB

sockets. The two Ethernet sockets
support simultaneous connectivity
with automation and information
technology (IT) networks. As an
open-source software platform,
applications can be programmed
using Node-RED, Python, and C.
RevPi Connect can be upgraded
with PROFINET, EtherNet/IP,
EtherCAT, Modbus TCP, and
Modbus RTU functionality without
the use of expansion modules.
Examples of RevPi Connect units
include:

 ■ PR100363, RevPi Connect S with
16 GB memory

 ■ PR100197, RevPi digital I/O
expansion module

 ■ PR100250, RevPi analog
expansion module

PROFINET and SBC PLCs

SBC PLCs can be sophisticated
devices capable of supporting
advanced networking protocols.
Process field network (PROFINET)
is an open standard for industrial
networking devices like PLCs,
drives, robots, diagnostic tools, etc.
It runs over industrial Ethernet and
is optimized for collecting data and
controlling industrial equipment
with real-time communications. It’s

available to run on most Arduino
and Raspberry Pi PLCs.

Industrial automation networks
need high-speed and deterministic
communication. PROFINET focuses
on deterministic performance that
delivers messages exactly when
needed and expected.

That means delivering each
message with the appropriate
speed based on the task being
performed. Not all tasks are
equally time sensitive. PROFINET
can deliver messages on various
protocols, including:

 ■ PROFINET Real-Time (RT)
 ■ PROFINET Isochronous Real-

Time (IRT)
 ■ Time Sensitive Networking (TSN)
 ■ TCP/IP (or UDP/IP)

Conclusion

A wide range of SBC-based PLCs
and industrial networking devices
based on Arduino and Raspberry
Pi technologies are available.
They use open-source software
and, in some cases, open-source
hardware. Arduino PLCs are
available as standard-sized units
for small networks, micro PLCs for
space-sensitive installations, and
machine controllers for embedded
applications. Quad-core Raspberry
Pi-based PLCs can support more
complex industrial networking
applications. Raspberry Pi-based
IPCs and IIoT gateways that
support high levels of flexibility in
network design and deployment are
available.

Figure 4: Industrial Shields’ Raspberry Pi
Ethernet PLC with 4 GB RAM and 21 I/Os.
Image source: Industrial Shields

Figure 5: Examples of RevPi Core SE IPC (left) and RevPi Connect IIoT
Gateway (right). Image source: KUNBUS

How single-board computers extend the reach of industrial automation

Figure 3: The Portenta Machine Control board is
designed for embedded applications in a wide
range of machines. Image source: Arduino

https://www.digikey.co.uk/en/products/detail/industrial-shields/012003000200/15761808
https://www.digikey.co.uk/en/products/detail/industrial-shields/012003001100/15761791
https://www.digikey.co.uk/en/products/detail/industrial-shields/016003000200/15761829
https://www.digikey.co.uk/en/product-highlight/k/kunbus/revpi-core-s-and-se-raspberry-pi-based-ipc
https://www.digikey.co.uk/en/product-highlight/k/kunbus/revpi-connect-s-and-se-raspberry-pi-based-iiot-gateway
https://www.digikey.co.uk/en/product-highlight/k/kunbus/revpi-connect-s-and-se-raspberry-pi-based-iiot-gateway
https://www.digikey.co.uk/en/products/detail/kunbus-gmbh/PR100360/16496647
https://www.digikey.co.uk/en/products/detail/kunbus-gmbh/PR100363/16496650
https://www.digikey.co.uk/en/products/detail/kunbus-gmbh/PR100197/10388704
https://www.digikey.co.uk/en/products/detail/kunbus-gmbh/PR100250/10384220

24 25
we get technical

Written by Jacob Beningo

Getting started with the
Raspberry Pi Pico multicore
microcontroller board
using C

There is an inherent need in
embedded systems to have a
powerful, low-cost microcontroller
unit (MCU). These devices play
an important role not just in the
product, but also in supporting
tests, rapid prototyping, and
capabilities such as machine
learning (ML). However, getting
started with MCUs generally
requires an in-depth understanding
of MCU technology and low-level
programming languages. On top
of that, development boards often
cost between $20 and $1000,
which can be too expensive for
many developers. Also, it’s not
always the case that a development
board is available, and even when
they are, designers often struggle
to get a board up and running.

This article introduces the
Raspberry Pi Pico (SC0915) as a
low-cost development board for
the RP2040 MCU that provides
developers with a wide range of
capabilities. The article explores

the Pico and some expansion
boards, examines the different
software development kits that
the Raspberry Pi Pico supports,
and demonstrates how to create a
blinky LED application using the C
SDK.

Introduction to the
Raspberry Pi Pico

The Raspberry Pi Pico was
first introduced in 2021 as the
development platform for the
RP2040 microcontroller. The
Pico can be used as a standalone
development board, or it can be
designed into a product directly
due to edge connections that can
be soldered to a carrier board

(Figure 1). Between the Pico’s sub
$5 cost and its multipurpose use,
it has become a popular solution
for both makers and professional
developers.

The RP2040 features a dual-
core Arm Cortex-M0+ processor
clocked at 133 megahertz (MHz)
and includes up to 264 kilobytes
(Kbytes) of SRAM. The RP2040
does not include flash on-chip.
Instead, the Raspberry Pi Pico
provides an external 2 megabyte
(Mbyte) flash chip that interfaces
with the RP2040 over a quad serial
peripheral interface (QSPI). The
board also provides a user LED, a
crystal oscillator that the phase
lock loop (PLL) uses to create a
stable high-speed CPU clock, and
a pushbutton to configure whether
the processor boots normally or
into a bootloader.

Figure 1: The Raspberry Pi Pico is a low-cost
development board that contains everything

necessary to develop applications on the
RP2040 microcontroller. Image source:

Raspberry Pi

An extensive ecosystem

The Raspberry Pi Pico already
has an extensive ecosystem that
allows developers to choose
between using MicroPython or
C software development kits to
write applications for the board.

One interesting note about the
Raspberry Pi Pico is that there
is not just a single development
board available. Instead, there are
three; the original SC0915 with a
standard configuration, the SC0917
which includes header connectors,
and the SC0918 which includes a

low-cost Wi-Fi chip for connected
applications (Figure 2).

For each of these versions, the
general footprint of the board
remains the same. The edge
connections for the board consist
of 40-pin edge connections for

Figure 2: The Raspberry Pi Pico is available in three
configurations. Image source: Beningo Embedded Group, LLC

Figure 3: The Raspberry
Pi Pico edge-connected
pinouts provide a wide
variety of peripheral
access. Image source:
Raspberry Pi

https://www.digikey.co.uk/en/supplier-centers/raspberry-pi
https://www.digikey.co.uk/en/products/detail/raspberry-pi/SC0915/13624793
https://www.digikey.co.uk/en/products/detail/raspberry-pi/SC0914-13/14306010
https://www.digikey.co.uk/en/supplier-centers/arm
https://www.digikey.co.uk/en/products/detail/raspberry-pi/SC0917/16608257
https://www.digikey.co.uk/en/articles/getting-started-raspberry-pi-pico-multicore-microcontroller-board

26 27
we get technical

the peripherals and connection
options shown in Figure 3.
These include power, ground, a
universal asynchronous receiver
and transmitter (UART), general
purpose input and output (GPIO),
pulse width modulation (PWM), an
analog-to-digital converter (ADC), a
serial peripheral interconnect (SPI),
an inter-integrated circuit (I2C)
interface, and debugging.

Breakout board options

When the Raspberry Pi is going
to be used for rapid prototyping,
there is a need to gain easy access
to the board’s edge connectors.
One option for accessing them
is to populate the headers and
use a breadboard. However, this
solution can often result in a mess
of wires that can lead to errors. So
instead, there are several options
for breakout boards that expand the
edge connectors to more readily
available interfaces.

For example, the MM2040EV Pico
module board from Bridgetek
breaks most of the edge
connectors into pin and socket
connections. Additionally, there is
the 103100142 shield for the Pico
from Seeed Studio that provides
each peripheral interface as a
connector. Each connector is pin
compatible with expansion boards
to add functions such as inertial
sensors, motor drivers, and range
finders.

To C or to MicroPython?

Embedded systems have
traditionally been written in C
because it balances low-level
control with higher-level system
application approaches. The
problem with C today is that
it’s an antiquated, fifty-year-old
programming language that is
rarely taught in universities. It
is also too easy to accidentally
inject bugs and cause damage.
Despite these potential issues, C
is the language of choice for the
majority of embedded systems
development.

An alternative to using C,
provided by the Raspberry Pi
Pico ecosystem, is MicroPython.
MicroPython is a CPython port
designed to run on MCU-based
systems. While it is undoubtedly
a heavier processor user than C, it
is a modern language with which
many developers are familiar and
comfortable. MicroPython can
abstract out low-level details of
the MCU and hardware. Hardware
accesses are through high-level
application programming interfaces
(APIs) that are easy to learn – an
important feature with tight project
deadlines.

When selecting which software
development kit (SDK) to use – C or
MicroPython – developers need to
focus on specific needs. Compared
to MicroPython, using C will provide
low-level access to the MCU’s
registers, have a smaller memory
footprint, and be more efficient.

Setting up the C SDK

When using the C SDK to create
a blinky LED application, there
are several options. The first is to
review the SDK documentation and
follow the instructions. The second
is to use a preset Docker container
to automatically install all the tools
necessary to get started. A third
option is to install the toolchains
and the Raspberry Pi Pico example
code manually, including:

 ■ Git
 ■ Python 3
 ■ Cmake
 ■ gcc-arm-none-eabi \
 ■ libnewlib-arm-none-eabi

Retrieving the Raspberry Pi Pico
example code can be done by
cloning Raspberry Pi’s git repo
using the following command:

git clone https://github.com/
raspberrypi/pico-sdk /home/sdk/
pico-sdk && \

 cd /home/sdk/pico-sdk && \

 git submodule update --init &&

Once these libraries and the source
code are installed, the next step is
to explore and compile a blinky LED
application.

Writing a first blinky
application

The C SDK comes with a blinky
example that developers can use
to build their first application.
The Code Listing below uses the
Pico’s onboard LED and the PICO_
DEFAULT_LED_PIN directive to set

Getting started with the Raspberry Pi Pico multicore microcontroller board using C

Copy

 /**

 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.

 *

	 	*	SPDX-License-Identifier:	BSD-3-Clause

 */

 #include “pico/stdlib.h”

 int main() {

 #ifndef PICO_DEFAULT_LED_PIN

 #warning blink example requires a board with a regular LED

 #else

 const uint LED_PIN = PICO_DEFAULT_LED_PIN;

 gpio_init(LED_PIN);

 gpio_set_dir(LED_PIN, GPIO_OUT);

 while (true) {

 gpio_put(LED_PIN, 1);

 sleep_ms(250);

 gpio_put(LED_PIN, 0);

 sleep_ms(250);

 }

 #endif

 }

up an I/O pin and blink it with a 250
millisecond (ms) delay

Per the listing, the LED_PIN is
assigned the default pin; calls are
then made to the C gpio APIs. gpio_
init is used to initialize the pin, while
gpio_set_dir is used to set the LED_
PIN to an output. An infinite loop is

then created that toggles the state
of the LED every 250 ms.

Compiling the application is
relatively straightforward. First,
a developer needs to create a
build directory in their Raspberry
Pi Pico folder using the following
commands:

mkdir build

cd build

Next, cmake needs to be prepared
for the build by executing the
following command:

cmake

Now, a developer can change to the
blinky directory and run make:

cd blink

make

The output from the build process
will be a blinky.uf2 file. The
compiled program can be loaded
on the Raspberry Pi Pico by
holding down the BOOTSEL pin and
powering up the board. The RP2
will then appear as a mass storage
device. The developer needs to
drag the blinky.uf2 file to the drive,
at which point the bootloader
will install the application. Once
completed, the LED should begin
blinking.

Conclusion

The Raspberry Pi Pico is an
attractive solution for embedded
developers looking for flexibility in
their development cycle. Several
options are available, including
standalone solutions or boards with
wireless connectivity. In addition,
the ecosystem supports C and C++,
as well as MicroPython. Developers
can pick which language works
best for their application and then
leverage the corresponding SDK to
accelerate software development.

Code listing: the Raspberry Pi Pico uses
the PICO_DEFAULT_LED_PIN directive to
set up an I/O pin and blink it with a 250 ms
delay. Code source: Raspberry Pi

https://www.digikey.co.uk/en/products/detail/bridgetek-pte-ltd/MM2040EV/14835361
https://www.digikey.co.uk/en/supplier-centers/bridgetek
https://www.digikey.co.uk/en/products/detail/seeed-technology-co-ltd/103100142/13688265
https://www.digikey.co.uk/en/supplier-centers/seeed
https://github.com/JacobBeningo/RpiPico

28 29
we get technical

Select the right AC/DC power supply to meet unique medical requirements

A guide for the ESP32
microcontroller series
Written by Don Wilcher

The ESP32 microcontrollers
have spawned into a central
part of the Internet of Things
(IoT) and embedded controller
arena. Espressif Systems, the
manufacturer of the ESP32
ecosystem, has created powerful
and affordable System-on-Chip
(SoC) devices that integrate
Wi-Fi, Bluetooth, and central
processing units (CPUs) into
one microcontroller package,
allowing these SoCs to be ideal
for embedded controllers and IoT
projects.

Navigating the terrain of the
various ESP32 hardware platforms
and software packages can be
a daunting task for the engineer
or maker. This guide will provide
information on technical
specifications, development
kits, and software design kits
(SDKs) related to the ESP32
microcontroller ecosystem. With
such a guide, you will be able to
select the appropriate ESP32
microcontroller device for your
specific project requirements.

ESP32 overview

With low manufacturing
development costs and a highly
effective processor, you can
deploy the ESP32 to various
IoT and controller projects.
Some key features of the ESP32
microcontroller include Wi-Fi,

Bluetooth, and a small form factor.
In general, here is a brief overview
of the ESP32 microcontroller.

Robust design

The ESP32 microcontroller
is equipped with the ability to
remove external circuit interfaces
dynamically. This feature
ensures its reliable operation
even in industrial settings. The
operating temperature range of
the ESP32 is -40°C to +125°C. The
microcontroller can be powered by
a supply voltage of +3.3V, which
makes it possible to develop
wireless remote sensing and
controller applications.

Ultra-low power
consumption

The ESP32 was designed for
portable devices, wearable
electronics, smart controllers,
and IoT applications. Using a
variety of proprietary software
packages, ultra-low-power

Figure 1: Typical ESP32
microcontroller. Image
courtesy of Wikipedia

https://en.wikipedia.org/wiki/ESP32

30 31
we get technical

consumption is achieved by the
ESP32 microcontroller. Additionally,
the ESP32 chip has various power
modes, dynamic power scaling, and
clock-gating features.

High level of integration

A high level of SoC integration
allows various electronic circuits
to be included with the ESP32. The
SoC high-level integration includes
the following onboard electronic
circuits.

 ■ Built-in antenna switches
 ■ RF balun
 ■ Power amplifier
 ■ Low noise receiver amplifier
 ■ Filters, and
 ■ Power management modules

With such features, functionality,
and versatility, the ESP32
microcontroller ecosystem can
provide minimal printed circuit
board (PCB) space requirements to
embedded applications.

Hybrid Wi-Fi, Bluetooth, and
hardwired communication
interfaces

You can set up a wireless system
or device that can be controlled by
a host controller using Wi-Fi and
Bluetooth. This can help reduce the
complexity of the communication
system and overhead on the main
controller CPU.

The ESP32 microcontrollers come
with different communication
interfaces like SPI, SDIO, and
I2C/UART. These specialized
hardwired interfaces provide other
communication schemes for
a host controller to control
device system architecture.

The ESP32 architecture

The ESP32 Architecture is
based on the Xtensa LXn CPU
cores. The Xtensa CPU cores
use a modular, flexible 32-
bit Reduced Instruction Set
Computer (RISC) architecture. A
RISC device is a microprocessor

architecture
that uses
a small
effective set of
programming
instructions.
The small set of
programming
instructions
aids RISC
architectures
Xtensa

processor to scale from a small
cache-less controller to a high-
performance digital signal
processor (DSP).

The Xtensa LXn CPUs

As presented earlier, the Xtensa
LXn has various CPU processing
capabilities. Here is a list of some
of the Xtensa LXn CPUs available
for ESP32 microcontrollers:

 ■ LX6 – the Xtensa LX6 CPU
is used in the original ESP32
and varieties of the ESP32-S
microcontroller family. The
Xtensa LX6 is a 32-bit low-power

Figure 2: The ESP32 Functional Block Diagram. Image courtesy
of Brian Krent (talk · contribs), CC0, via Wikimedia Commons

Figure 3: A typical RISC Architecture. Image
courtesy of javatpoint.

microprocessor having dual-core
and single-core configurations.
The Xtensa LX6 CPU provides
performance and energy
efficiency for the ESP32 and
ESP32-S microcontroller variants

 ■ LX7 – the LX7 processor is an
enhanced version of the Xtensa
LX6 CPU. An efficient 32-bit
processor architecture powers
the LX7 device. Configurable
RISC, data caches, and local
memories are integrated into the
LX7’s silicon. The ESP32-S2 and
the ESP32-S3 microcontrollers
use the LX7 features, which
are enhancements to the LX6
architecture

• RISC-V cores – the
ESP32-C3 and the ESP32-C6
microcontrollers use single-
core 32-bit RISC-V processors.
The royalty-free, open-source

instruction set architecture
(ISA) removes expense costs
in ESP32-C3 and ESP-C6 chip
manufacturing. The RISC
architecture uses 5 core blocks:
a hardwired control unit (HCU),
instruction cache, data cache,
data path, and memory. These
5 core blocks use registers,
thus allowing reasonable
operating speeds for the
specified microcontrollers

ESP32 subfamilies

If you’re working on an IoT,
wearable, or embedded controller
project, there are plenty of ESP32
microcontrollers to choose from.
Below, you’ll find a list of different
ESP32 microcontroller subfamilies,
along with their features and some
examples of projects you can
create with them.

ESP32 (original variant)
 ■ Core Architecture: Xtensa LX6

(single-core or dual-core)
 ■ Technical Specifications:

1. Clock Speed: Range (e.g., 80
MHz - 240 MHz).

2. Memory: RAM & ROM
capacity range (e.g., Up to 520
KiB RAM, 4 MB Flash).

3. Has 34 programmable GPIOs,
SPI, I2C, I2S, UART, ADC,
Motor PWM, LED PWM

a. Wireless Connectivity: Wi-
Fi and BLE

b. Power Management:
Low-power operation with
various sleep modes

c. Security Features:
Hardware-based security
(e.g., secure boot,
encryption)

d. Project Example: Smart
home weather station
(utilizing dual core for
efficient processing).

Figure 4: The LX7 processor architecture. Image courtesy of Cadence.

Figure 5: ESP32 DevKitM-1

A guide for the ESP32 microcontroller series

https://upload.wikimedia.org/wikipedia/commons/9/92/Espressif_ESP32_Chip_Function_Block_Diagram.svg
https://www.javatpoint.com/risc-vs-cisc
https://www.cadence.com/en_US/home/resources/datasheets/xtensa-lx7-processor-ds.html

32 33
we get technical

ESP32-S Series
(Successors)

 ■ Core Architecture: Xtensa
LX7 (dual-core) - Improved
performance and security.

 ■ Variants:

1. ESP32-S2: Wi-Fi only (no
Bluetooth)

2. ESP32-S3: Wi-Fi and BLE

a. Technical Specifications
(General - May vary slightly
between S2 & S3)

i. Improved clock speeds
compared to the original
ESP32.

b. USB Support.

c. Memory: 320KB SRAM,
128K ROM

d. Has 43 programmable
GPIOs, SPI, I2C, I2S, UART,
ADC, LED PWM

Project examples:
 ■ ESP32-S2: Wi-Fi smart plug

(single LX7 core sufficient)
 ■ ESP32-S3: wearable fitness

tracker (dual LX7 cores for real-
time processing)

ESP32-C series (RISC-V
cores)

 ■ Core architecture: single-core
32-bit RISC-V (potentially lower
cost)

 ■ Variants:

1. ESP32-C3: Wi-Fi and BLE

2. ESP32-C6 (Upcoming): Details
not fully confirmed yet

a. Technical specifications
(General - may vary
between C3 & C6)

3. Clock speed: likely similar
range to other ESP32s (80
MHz - 240 MHz - Confirmation
needed for C6)

4. Memory: likely similar to or
increased capacity compared
to ESP32-C3 (e.g., ESP32-C3:
Up to 4MB Flash, 400 KiB
RAM)

5. Has 14 programmable GPIOs,
SPI, I2C, UART, LED PWM, ADC

 ■ Wireless connectivity (C3): Wi-Fi
and BLE (Confirmation needed
for C6)

Project example (ESP32-C3):
wireless soil moisture sensor (cost-
sensitive application).

ESP32-H2 (integrates the
IEEE 802.15.4 connectivity
with Bluetooth 5 Low Energy
(LE).

 ■ Core architecture: single-core,
32-bit RISC-V microcontroller

 ■ Variants: No variants as of today
 ■ Technical specifications

(general)
1. Clock Speed -96 MHz
2. Memory: 320 KB of SRAM

with 16KB of Cache, 128KB of
ROM, and Flash Memory of
4MB

3. Has 19 programmable GPIOs
with support for ADC

4. SPI, UART, I2C, I2S, GDMA,
and LED PWM

 ■ Wireless connectivity: IEEE
802.15.4 (Mesh Network) and
Bluetooth 5 (LE)

Project example (ESP32-H): smart
agriculture system (can monitor
environmental conditions like
soil, temperature, and light levels
application).

Figure 6: ESP32-S3 DevKitM-1

Figure 8: ESP32-H2 DevKitM-1

Figure 7: ESP32-C6
DevKitM-1

ESP32-P4 (powered by a
dual-core RISCV CPU)

 ■ Has AI instruction extensions
 ■ Advanced memory subsystem

and integrated high-speed
peripherals

 ■ Positioned for the forthcoming
era of embedded applications

 ■ Specific application areas:
1. Human Machine Interfaces

(HMI)
2. Edge computing
3. Increased IO-connectivity

demands
 ■ ESP32-P4 development kits

coming soon

ESP32 Software
Development Kits (SDKs)

With various ESP32 development
kits, Espressif has provided a
resource of programming tools. The
SDKs are available for the ESP32
microcontrollers presented in

this guide by downloading from
open-source GitHub repositories.
Documentation is available
with sample code to ensure the
main features of each ESP32
microcontroller can be easily
explored. The following is a short
list of available SDKs for the ESP32
microcontroller ecosystem.

 ■ ESP-IDF – the official IoT
Development Framework for the
ESP32, ESP32-S, ESP32-C, and
ESP32-H family of SoCs. The
SDK allows typical or generic
applications to be built on these
microcontroller platforms.
Traditional programming
languages like C and C++ are
used to develop microcontroller
applications using the SDK

 ■ ESP-Matter – this software
implementation of the Matter
protocol is a collaborative effort
of the Computer Software
Assurance (CSA) and company
members. This consortium of

company members and the CSA
allows device implementation
on Android and iOS controllers.
The ESP microcontrollers play an
integral role in the open-source
Matter SDK development

 ■ Arduino-ESP SDK – this SDK,
also known as the Arduino core,
is a software development kit for
the ESP32 that allows developers
to program this microcontroller
ecosystem. The core is included
with the Arduino integrated
development environment (IDE).
Lastly, the Arduino IDE is a
collection of software libraries,
and example code for the ESP32
development kits and boards

Conclusion

The ESP32 microcontrollers offer
versatility and powerful solutions
for industrial and commercial
IoT applications. The ESP32
ecosystem is integrating powerful
processing capabilities, reliable
connectivity, and advanced security
features. Whether deployed in
energy-efficient sensors or rugged
industrial monitoring systems, the
ESP32 microcontrollers provide
the flexibility and performance
needed to drive innovation and
address the diverse challenges
of the IoT landscape. This guide
provides an overview of the
ESP32 microcontroller, including
its programmable platform,
capabilities, and features to assist
you in selecting the appropriate
device for your innovative projects.

The ESP32 microcontrollers offer versatility
and powerful solutions for industrial and
commercial IoT applications.

A guide for the ESP32 microcontroller series

34 35
we get technical

retroelectro

Figure 1. Chuck Peddle

34

Figure 2. CPU 6502

Retro Electro: the birth of the
microprocessor and Chuck
Peddle Written by David Ray, Cyber City Circuits

This is the creation story of the low-
cost microprocessor market with
the MOS6502. This tale is told from
the perspective of Chuck Peddle, a
farm boy with ambitions to never
work on a farm again. While you do
not see his name in lights, chances
are the lights you’re using to read
this were made possible using
several of Peddle’s inventions.

Early life

Born in Bangor, Maine, Chuck
Peddle grew up as a country boy
in a large family with six brothers
and sisters. He had to get up early
with the animals and work all day
just to go to bed and do it again the
next day. His upbringing instilled
in him a strong work ethic and
solid problem-solving skills. One
of his first jobs in High School was
at the local radio station as a DJ,
where he realized that working on
the radio, with the vacuum tubes
and such, was more fulfilling than
talking on the radio. This started
a curiosity within him that turned
into a drive to learn more. After high
school, he joined the United States
Marine Corps Reserves, where he
served in a few areas, including
training in an infantry unit.

35
we get technical

Living at the dumb end of a
shovel

Peddle attended the University of
Maine in the 1950s. He didn’t go
into college with a specific career
path in mind, but he understood
that taking classes would make
him smarter and better prepare
him for the job market, so he took
a lot of physics and mathematics
courses. He didn’t know what he
would do after college, but he
knew it wouldn’t involve working
on a farm. In interviews, he recalls
that being at the ‘dumb end of a
shovel’ motivated him to pursue a
career that provided an intellectual
challenge and opportunities for
advancement. He feared that if he
remained in Maine, working on the
farm, that would be all he would
ever do.

EE 21: elements of
communication

In an interview, Peddle recounts
a time when he had a gap in his

Figure 3. University of Maine: 1958 Course Catalog

class schedule. He discovered
a course taught by a member of
Claude Shannon’s team at MIT.
The instructor had experienced a
nervous breakdown while working
for Shannon, and the research was
overwhelming him. He was offered
a position at the University of Maine
to teach a few courses each week
while on sabbatical from MIT.

The teacher had a unique way of
looking at communications theory
in this class. He started the class
by explaining that before you can
learn how to communicate, you first
need to know fundamentally how

Retro Electro fun fact:
Claude Shannon created the
foundations of all digital fields
of study with his master’s
thesis,‘A Symbolic Analysis of
Relay and Switching Circuits.’
Learn more about Shannon and
his participation in the 1956
Dartmouth College Summer
Research Project in the Retro
Electro Article,‘Programming a
Calculator to Form Concepts.’

https://emedia.digikey.com/view/199618710/21/
https://emedia.digikey.com/view/199618710/21/

36 37
we get technical

the eyes and ears work. This ‘first
principles’ approach that he learned
from this class made Chuck’s
ambitions take a hard right turn
toward computers.

General Electric

After he finished school, he knew
two things. He wanted to work with
computers, and he wanted to live
on the West Coast. He applied to
lots of places and then settled upon
a junior position at General Electric,
who was the first business in the
world to own and operate its own
computer system.

One of Peddle’s first positions
was on the first hard disk team
at GE, where he played a pivotal
role in advancing storage
technology. Among Peddle’s early
accomplishments is his patent
for ‘Zoned Bit Recording’ while on
this team. Chuck Peddle patented
the pattern used with ‘zoned bit
recording’ for hard drives. This
work contributed to optimizing data
storage, making hard disk drives
more practical, and gave him a
deep understanding of hardware
design and large-scale systems.
These experiences honed his
technical expertise and prepared
him for future challenges.

This showed the ‘higher ups’
that Peddle would bring a unique
perspective, and that put him on
different teams while at General
Electric, settling on him having a
desk in the networked systems
department.

Online point of sale
terminals

The popularization of payment
cards began in the early sixties.
BankAmericard and Master Charge
(now Visa and Mastercard) were
becoming the preferred payment
method for consumers. You might

be old enough to remember when
stores used the ‘knuckle buster’ to
obtain an imprint of your card to
call it in to confirm your account
before you could complete your
purchase. The rise in central
computing and mainframes made
it possible for remote terminals to
connect to powerful computers on
the other side of town. This could
allow cash registers in a store
to have a terminal for automatic
credit verification. This is when the
magstripe on payment cards was
introduced.

They debuted the system at a local
JCPenney as a full-scale test.
Everything went smoothly, but on
the busiest shopping day of the
year, the day after Thanksgiving, the
system had a catastrophic failure.
The entire computer division had
egg on its face. This brought to the
front Peddle’s new concept of a
computer inside every part of the
shopping experience: ‘Distributed
Intelligence.’

With this new concept, Peddle
approached companies like
Exxon, looking for cooperation
in developing this new online
point of sale (POS) terminal.

retroelectro

Retro Electro fun fact: at this time,
Butler Lampson at UC Berkeley
was working on ‘Project GENIE’
for ARPA, which developed the
key systems needed for effective
and optimized timesharing of
mainframe computers. Learn more
in the Retro Electro Article ‘Project
ALOHANET - Task II.’

Figure 4. Chuck Peddle 1960

“When I left my campus (at the University of
Maine) in 1959, there was not a single computer
on the campus.”

- Peddle

He saw an opportunity to put a
microprocessor in the cash register,
fuel dispenser, card reader, etc.
He felt like it was going in a strong
direction when it abruptly ended.
In 1970, General Electric sold its
computer division to Honeywell,
and Peddle’s POS dream hit a wall.

Intelligent terminal systems

Peddle did what most unemployed
inventors do, he started his own
business. Intelligent Terminal
Systems. For the next few years,
he was determined to develop the
Electronic Cash Register. With a
small team, he tuned the concept
and design to the limit of available
technology. There simply were not
enough logic chips to manage the
computer needs of a gas station.

Not yet.

Motorola - We want to turn
out computers like GM turns
out Chevys

In the late 1960s, a company
named Viatron entered the market,
attempting to lease computers to
anyone who wanted one. They felt
like if they could be one of the first
in the market, there was no way
they could lose. Having your own

computer stood in stark contrast
to the timeshare model, which was
the best way to access a computer.
Numerous businesses would have
paid any amount of money to have
their own computer, and Viatron
was offering to lease it to them for
as low as $40 a month.

Investors lined up, Viatron made
millions, and soon they found
themselves in a real ‘Elizabeth
Holmes situation.’ They had
partnered with Motorola to design
custom ICs for their product. While
Motorola worked to create the
chips, Viatron focused on securing
as many preorders and as much
investment capital as possible.
This continued until the machine
was supposed to be released in
February 1970. Delays at Motorola
postponed the product’s release
schedule, revealing that the product
‘System 21’ sort of didn’t actually
exist.

Tom Bennett

Viatron went bankrupt in March
1971, leaving its creditors in
the wind. The Motorola team
developing the chips for the
‘System 21’ computer suddenly
didn’t have anything to work on.
The mythical Tom Bennett headed

this team, and legend goes that
Bennett used the incomplete
System 21 designs as a starting
point to design the Motorola 6800.

The Motorola 6800

Chuck Peddle’s efforts to develop
the Intelligent Terminal Systems
product led him to the doors of
Motorola. Tom Bennett hired him
to work on the 6800 project, and
Peddle, along with Bill Mensch,
was instrumental in completing the
project and designing peripherals
for the 6800.

When the 6800 was ready for the
market, Peddle switched to being
a Field Applications Engineer.
His time working with Exxon and
Intelligent Terminal Systems
gave him a sharp ear to customer
wants and needs. The 6800 sold
for around $300 a unit in 1974, so
it was important that it was used
where it made the most sense, and
it was Peddle’s job to figure it out.
This microprocessor was highly
robust and capable, particularly for
the early 1970s, but its complexity
made it too expensive, and the
team knew this.

Peddle had his own take on the

Retro Electro fun fact: this
coincides with the industry-wide
recession that caused Hans
Camenzind to get laid off from
Signetics. Learn more in the Retro
Electro Article: ‘Five Five Five: The
Story of Interdesign Inc.’

“It’s too bad we did not patent the **Expletive**
out of it, because we could have been very
wealthy as a result.”
- Chuck Peddle on the Electronic Cash Register

https://emedia.digikey.com/view/306614740/32-33/
https://emedia.digikey.com/view/306614740/32-33/
https://emedia.digikey.com/view/877057957/30-31/
https://emedia.digikey.com/view/877057957/30-31/

38 39
we get technical

history of microprocessors. He feels
that the legendary Intel 4004 (1971)
and 8008 (1972) aren’t actually the
first true microprocessors. While
he appreciated the contributions
of those earlier chips, he saw them
more as calculator chips. Instead,
Chuck believes the title of the first
real microprocessor belongs to
Tom Bennett’s 8-bit Motorola 6800
(1974).

Armed with these customer
surveys, the team started working
on another microprocessor, one
far less capable than the 6800 but
an order of magnitude cheaper.
He found that the customer needs
were simple and didn’t require most
of the instruction set the 6800 had.
This low-cost, slim-down version
would be an easy sale, but Motorola
had a lot invested in the 6800, and it
needed to be successful. Motorola
shut down the project and decided
to move the team to Austin, Texas.

Chuck Peddle, being a very
smart businessman, took this
opportunity to claim ownership of
the intellectual property for their
low-cost microprocessors. In an
interview he tells the story as: “So,
they sent me a formal letter from
the attorneys saying that ‘You have
to stop working and selling the
concept of a low-cost computer.
We are going to only do this (the
6800)’. I wrote to them and said,
‘As of this moment, I will not work
on any micro-processor for you
again because I’m going to go do
that micro-processor and you just
did what is called in our industry

‘product abandonment, and so
now you can’t patent it. You can’t
claim it as yours.’ We then went off
and found a company (to join) in
Pennsylvania.”

Several of the team had little
interest in moving to Texas, but still
wanted to develop this low-cost
concept. Of the twenty or so team
members that worked on the 6800,
eight jumped ship with Peddle.
These eight include:

 ■ Chuck Peddle – Program
Manager

 ■ Bill Mensch – Key Designer
 ■ Rod Orgill – Layout Designer
 ■ Harry Bawcom – Layout and

Manufacturing Engineer
 ■ Wil Mathys – Design Engineer
 ■ Terry Holdt – Project Manager
 ■ Ray Hirt – Design Engineer
 ■ Mike Janes – Sales and

Marketing

After leaving Motorola, they
knew they needed to find a
manufacturing partner if they were
going to get off the ground with
their low-cost microprocessor
concept. They tried to get in with
several companies and found they
worked best with a small calculator
chip manufacturer in Pennsylvania,
MOS Technology (pronounced
M-O-S Technology).

MOS technology

MOS Technology was a pivotal
player in microprocessor history.
It was founded in 1969 in Valley
Forge, Pennsylvania by former
General Instrument executives
with the original goal of producing
affordable calculator chips. Its
name, an acronym for Metal Oxide
Semiconductor, reflected its focus
on innovation in semiconductor
manufacturing.

The early years were characterized
by survival in a volatile market. The
calculator industry faced disruption
due to Texas Instruments’
aggressive pricing, compelling
MOS Technology to diversify its
offerings. The company’s trajectory
shifted in 1974 when Chuck Peddle,
and his team of engineers left
Motorola to join MOS Technology.

Calculator wars

The team’s departure from
Motorola coincided with the
Great Calculator Wars of the
mid-seventies. Before the proper
microprocessor, the market had
‘calculator chips.’ The electronic
desk calculator wasn’t just a status
symbol, it was necessary for the
workers of the day to keep up with
the increasing pace of business.

retroelectro

‘You have to stop working and selling the
concept of a low-cost computer. We are going
to only do this (the 6800)’

The market was flooded with
calculators. Desktop, scientific,
pocket, battery-operated, etc.
At the root of this market boom
were the core chips sold by Texas
Instruments. In the mid-1970s,
Texas Instruments realized they
could sell complete calculators
directly to consumers and cut ‘the
middleman’ out. Texas Instruments
could manufacture a working
marketable calculator cheaper
than they were selling the chips to
manufacturers like Commodore,

Royal, Casio, Rockwell, and others.

This market upheaval, caused by
TI’s shrewd decisions, brought
dozens of companies to their
knees. Many of those companies
perished, but a few overcame this
by switching to computers. MOS
Technology had luck getting the
contract to make the custom ICs
for Atari’s new Pong system, which
created the video game market
shortly before Peddle and Co.
joined.

The low-cost
microprocessor

Going all the way back to his days
at General Electric, he knew what
he wanted. He understood what
it would take to make this work.
He had been working on this idea
since before Intelligent Terminal
Systems. Until now, the problem
had always been that he couldn’t
convince the people with the money
because he didn’t have the market
research to really show it. Nobody

Figure 5. Pong

40 41
we get technical

and they can bring a lot of money
online.

MOS6502

MOS Technology’s crowning
achievement is the MOS6502. With
a limited instruction set, it was fully
capable of meeting nearly every
customer’s needs, including cost.
Through some real innovations in
masking and die fabrication, MOS’s
manufacturing yield was higher
than Motorola’s and this was due
to several innovations and clever
design decisions.

Die size

Since the 6502 had a limited
instruction set and fewer
capabilities than the 6800, its die
was significantly smaller allowing
them to fit more on their three-inch
silicon wafers. This meant that,
even if they had a lower percentage
yield than Motorola, they could still
produce many more working units

retroelectro

Figure 7. MOS6502

that became MOS Technology’s
magnum opus. They worked
tirelessly to create a functional and
affordable microprocessor that
would take the market by storm.
They initially devised two designs:
the MOS6501 and the MOS6502.

MOS6501

The MOS6501 was pin-compatible
with the Motorola 6800. While
it used an entirely different
instruction set and was not a
direct replacement, if you had a
design built around the 6800, you
could likely replace it with a 6501
and make it work with relatively
light effort. … As a final insult to
Motorola, it was sold for $20.

This part of the story ends with
a lawsuit. Motorola sued MOS
Technology over the MOS6501 and
won, forcing MOS to pull it from the
market. It is not known how many
MOS6501s were actually sold, but
estimates are below a thousand.
Very few are known to exist today,

Figure 6. MOS6501

did; it was all brand new, and
mainframes with terminals seemed
like the most cost-effective way
forward.

Once again, the team at MOS
Technology did not believe in this
low-cost idea, but the company’s
president, John Paivinen, did.
Paivinen was Peddle’s manager
at General Electric’s Computer
Division in the 1960s. He would
have remembered Peddle’s
‘Distributed Intelligence’ concept,
and he knew that the technology
was there to make it possible now.

Starting from scratch, with their
own knowledge and unique
skills, they now have an in-house
IC fabricator. Peddle took the
billet of ‘program manager’ and
modeled the product after all of the
customer interactions he had going
all the way back to the JCPenney
computer crash a decade earlier.
All of the lessons learned from
working with GE, Exxon, ITS,
and Motorola all overlapped into
the perfect product summary

than Motorola or other companies
for that matter.

Mask zapping

In IC production, a mask
is an essential tool in the
photolithography process. It acts
as a stencil, defining the intricate
patterns of the circuit that will be
etched onto the wafer. The mask
contains a series of opaque and
transparent regions corresponding
to the desired design, shining
light on some areas and leaving
shadows on others. The mask is

Figure 8. The 6502 team from right to left: Sydney-Anne Holt, Michael Jaynes, Harry Bawcom,
Chuck Peddle, Ray Hirt, Rod Orgill, Bill Mensch, and Wil Mathys. Seated: Terry Holdt.

placed over the wafer, coated with a
light-sensitive photoresist material
during the process. Ultraviolet light
is then shone through the mask,
transferring the pattern onto the
photoresist. The exposed areas
of the photoresist are chemically
altered, allowing them to be
selectively removed. This leaves a
precise pattern on the wafer, which
guides subsequent processes such
as etching or doping.

Making the mask is expensive and
time-consuming, but each time
you use it, it could collect tiny dust

particles and create new defects,
becoming less and less effective.
This is because if there’s an error,
scratch, dust, etc., on the mask, it
will be transferred to every single
die it is used with. This was a real
nuisance for many companies, like
Intel, Fairchild, and Motorola.

The team at MOS developed a
unique way of fixing their masks
using lasers to correct the mask
from imperfections in between
uses, called Mask Zapping. This
dramatically increased yield to over
90%, while the competition was

42

battling with yields in the twenties.

Smart layout

Bill Mensch is sometimes called
‘the Best Layout Guy in the World.’
He and Peddle met at Motorola,
where Mensch worked on the
design and layout of the Peripheral
Interfaces for the 6800 series of
chips. Designs need revisions in the
early stages. Engineers design the
layout and mask, then wait for it to
be fabricated. Once they have it in
hand, they gather around and probe
and prod to find the issues with it
and try again. It can sometimes
take as many as nine or ten
attempts to get it right, but Mensch
and his layout team got it perfect
the very first time.

Each revision could cost a
couple hundred thousand dollars,
especially if you didn’t have your
own in-house fab shop, but Mensch
did. By getting it right the first time,
MOS Technology hit the starting
line ahead of the competition,
which had to invest millions to get
their product right.

Lore has it that the die for the
first 6502 worked 100% perfectly
on their very first try. There have
been challenges to this claim and
Eric Schlaepfer tells this tale on
YouTube.

The ringleader of the 6502

From here, MOS Technology
took its product to WESCON75,
where it gained the attention of

companies such as Atari, Apple,
and Commodore.

This isn’t the end of Chuck Peddle.
He had a powerful computing
career up until his death in 2019.
His journey from a Maine farm
boy to a pioneer of the low-cost
microprocessor market is a
testament to ingenuity, confidence,
faith, and vision. His innovations
laid the foundation for modern
computing, influencing industries
and empowering the rise of
personal computers. Peddle’s
impact is felt every time you power
on a device or connect to the
digital world – a legacy of making
technology more accessible and
affordable.

Suggested reading

1. Stephen Edwards and Bill Mensch – The Genesis of the 6502
Microprocessor (Interview)

2. Computer History Museum – Oral History of Check Peddle

3. Team 6502: The Story of the Team Behind the Chip that Launched a
Revolution

4. Microsystems – Here Comes the PET

5. Interview with Chuck Peddle for Scene World Magazine

6. MOS MCS6500 Microcomputer Family Hardware Manual

7. Abort Retry Fail – The History of Commodore - Part 1

8. Viatron: System 21 is NOW!

9. Embedded Related – Development of the MOS Technology 6502 A
Historical Perspective

10. The 6502 and the Best Layout Guy in the World

The 6502’s cultural impact cannot
be overstated when someone says
it is one of civilization’s greatest
inventions. While most chips may
come and go, often remaining
unsung except in the catalog pages
of long-forgotten, decades-old data
books, the 6502 continues to be a
cornerstone of microprocessing for
the past fifty years.

The author acknowledges the
help of the many historians who
have cataloged this story over the
years, especially Archive.org, Eric
Schlaepfer, Ken Shirriff, Scene
World, Team6502.org, the Computer
History Museum, Clint Bridges, and
others.

1937

1950s

1970

1974

Chuck Peddle was born in
Bangor, Maine.

Attended the University of
Maine, taking physics and
mathematics courses without
a specific career path but
determined to avoid farm work.

General Electric sells
its computer division to
Honeywell.

Peddle starts Intelligent
Terminal Systems to develop
an online payment system.

Motorola released the 6800,
priced at $300. Peddle pushed
for a cheaper, more accessible
processor but faced resistance
from Motorola’s leadership.

1938
Claude Shannon publishes ‘A
Symbolic Analysis of Relay and
Switching Circuits.’

1960
Began working at General
Electric, contributing to the
development of early hard disk
technology and filing a patent
for “Zoned Bit Recording.”

Joined Motorola, contributing to
the development of the 6800
microprocessor.

1973

1974

1975

Motorola planned to move the
microprocessor team to Austin,
Texas. Peddle and several team
members left the company to
join MOS Technology in Valley
Forge, Pennsylvania.

MOS Technology released the
6501 for $20 and the 6502 for
$25.

Motorola sued MOS
Technology over the 6501’s
design. As a result, it was
pulled from the market.

retroelectroretroelectro

https://www.youtube.com/watch?v=Uk_QC1eU0Fg
https://www.youtube.com/watch?v=Uk_QC1eU0Fg
https://www.youtube.com/watch?v=mEhvfJaPTlI
https://www.youtube.com/watch?v=mEhvfJaPTlI
https://www.youtube.com/watch?v=enHF9lMseP8
https://www.team6502.org/
https://www.team6502.org/
https://archive.org/details/HereComesThePET/mode/2up
https://www.youtube.com/watch?v=V6brbp75T4k
https://archive.org/details/6502_Mostek/mode/2up
https://www.abortretry.fail/p/the-history-of-commodore-part-1
https://bitsavers.trailing-edge.com/pdf/viatron/ViatronSystem21Brochure.pdf
https://www.embeddedrelated.com/showarticle/1453.php
https://www.embeddedrelated.com/showarticle/1453.php
https://research.swtch.com/6502

44 45
we get technical

How to select and
use an audio codec
and microcontroller
for embedded audio
feedback files
Written by Jacob Beningo

There is a growing need among
embedded systems to provide high-
fidelity audio instead of buzzers
for user feedback, including
alarms and alerts. While beeps
and chirps have been effective
in the past, users are expecting
advanced sounds that can only be
produced through playing audio
from file formats such as MP3s.
The problem is that audio playback
can appear intimidating and add
additional cost and complexity to a
system. The first instinct is to find a
microcontroller that can play MP3s,
but this often adds several dollars
to the bill of materials (BOM) and
considerable complexity to the
embedded software.

One solution that is particularly
good at balancing the additional
cost and software complexity is to
use an audio codec. Audio codecs
not only accept an audio data

stream from a microcontroller, they
often also have multiple features
that allow the developer to carefully
tune the audio playback system to
improve the quality of the sound
played by the system.

This article will discuss the
role of audio codecs, the main
characteristics that developers
should consider when making a
selection, and how to apply them
effectively. Solutions from AKM
Semiconductor, Texas Instruments,
and Maxim Integrated will be
introduced and used as examples
here, though others are also
available. It will conclude with tips
and tricks on how to accelerate
audio playback application
development using a codec, while
lowering system cost.

https://www.digikey.co.uk/en/articles/design-techniques-to-increase-a-piezo-transducer-buzzer-audio-output
https://www.digikey.co.uk/en/supplier-centers/akm-semiconductor
https://www.digikey.co.uk/en/supplier-centers/akm-semiconductor
https://www.digikey.co.uk/en/supplier-centers/texas-instruments
https://www.digikey.co.uk/en/supplier-centers/maxim-integrated
https://www.digikey.co.uk/en/articles/how-to-properly-implement-audible-alarms-in-medical-monitoring
https://www.digikey.co.uk/en/articles/how-to-properly-implement-audible-alarms-in-medical-monitoring

46 47
we get technical

features, in addition to a beep
generator input that can be used
to generate a beep using a pulse
width modulation (PWM) signal at a
desired frequency.

Developers will find that the main
differentiator for an audio codec
is going to be whether it outputs
mono or stereo audio, as well as
the digital block capabilities. For
example, the AK4637EN offers a
high-pass filter, a low-pass filter,
a four-band equalizer, an auto-
leveling channel feature and a
single-band equalizer. The latter
can be used as a notch filter. How
a developer sets up these digital
filters can dramatically affect how a
system sounds.

The audio codec can sometimes
intimidate a developer that is new
to audio playback. For example,
while the AK4637EN is a simple

audio codec, a quick examination of
the datasheet shows that it has 64
configurable registers. That might
seem like a lot at first, but most of
those registers are used to set the
filter coefficients for the various
digital filters that are available.
There are only a handful that
need to be used to get the system
outputting audio properly, making
the driver development for an audio
codec far simpler than a newbie
might imagine.

How to select an audio
codec

One of the key drivers to selecting
anything in product development
is cost, and audio codecs are no
different. Still, it is important to
keep in mind that developers get
what they pay for, so when it comes
to audio, a team must carefully

Figure 1: The AK4637EN is an audio codec with a mono speaker output that has
audio playback and recording capabilities. It also contains an internal audio block
that can be used to filter incoming and outgoing audio to improve audio fidelity.
Image source: AKM Semiconductor

What are audio codecs?

An audio codec is a hardware
component that is capable of
encoding or decoding a digital
data stream containing audio
information1. An audio codec is
useful because it allows the audio
processing to be offboarded
from the microcontroller. This
can significantly decrease the
software complexity and also allow
a less expensive and less capable
microcontroller to be used for an
application.

A typical audio codec will contain
several functional blocks:

 ■ An I2S interface to transmit or
receive encoded digital audio
data

 ■ An I2C interface to configure and
read the audio codec’s control
registers

 ■ A microphone input which is
connected to an analog-to-digital
converter (ADC)

 ■ At least one audio output
channel such as a speaker
output, but most also include a
line out and may include multiple
speaker outputs for stereo
playback

 ■ A digital block that contains
high-pass, low-pass, notch, and
equalizer filters to tune audio
playbacks and recordings

An example audio codec that
is quite popular due to its low
cost and audio capabilities is the
AK4637EN 24-bit audio codec
from AKM Semiconductor (Figure
1). The AK4637EN has all these

weigh the design requirements
against the key solution
parameters.

The first consideration is the
required output from the audio
codec. There are several different
choices. For example, the
AK4637EN has a line output and
a mono speaker output. There
are other codecs like the Texas
Instruments TLV320AIC3110IRHBR
stereo audio codec that can drive
two speakers at 1.29 watts (Figure
2).

Other audio codecs like the Maxim
Integrated MAX9867 are designed
to only drive a pair of headphones
(Figure 3). The MAX9867 has
the typical I2S and I2C digital
interfaces, but it also contains
stereo microphone inputs and
two line ins that can be digitally
selected.

Deciding between these three
solutions as to what the output
type will be (or even the input) is a
critical early decision.

Developers also need to consider
what they will be driving. Will the
audio codec be directly driving
headphones, one speaker or a
pair of speakers, and what will the
output rating be? If the system will
be driving a 5-watt speaker, there
are not many codecs for embedded
systems that will do that. Instead,
a developer may want to select the
line out and use a separate Class-D
amplifier to drive the speaker
directly. This saves some cost while
also providing design flexibility.

Two final considerations are
the internal routing and digital
filtering capabilities. Here is where
the real differentiation and cost
differences are determined for
an audio codec. For example, the
TLV320AIC311IRHBR has de-
pop and soft start capabilities to
minimize speaker popping and
allow for a smooth transition
into audio playback. It also has
an internal mixer for each output
channel and digital volume control.

It is up to the developer to carefully
balance their needs from the
audio codec with the BOM and the
amount of board space that will be
consumed by the circuitry.

The audio playback system

When working with an audio codec,
it is important to realize that there
are several different blocks outside
the audio codec that are necessary
to achieve successful audio
playback. The exact blocks will
vary slightly based on application

Figure 2: The TI TLV320AIC3110IRHBR is an audio codec with stereo output and
amplification in addition to a microphone input. The codec can drive 1.29 watts from
internal amplifiers and has programmable digital audio blocks. Image source: Texas
Instruments

How to select and use an audio codec and microcontroller for embedded audio feedback files

https://www.digikey.co.uk/en/products/detail/akm-semiconductor-inc/AK4637EN/974-1111-1-ND/5683917
https://www.digikey.co.uk/en/products/detail/texas-instruments/TLV320AIC3110IRHBR/296-25584-2-ND/2201340
https://www.digikey.co.uk/en/products/detail/maxim-integrated/MAX9867ETJ-T/MAX9867ETJ-TTR-ND/2137370

48 49
we get technical

and the method decided on
for playback, but a generalized
diagram is shown in Figure 4.

There are several points in this
diagram that are worth discussing.
First, there needs to be some
method that is used to store the
audio playback files. There are
two options for this; store the files
internally in the microcontroller
flash memory or store them
externally in flash memory. The
choice will depend on how large
the audio file(s) are and how large
the internal flash memory is on the
microcontroller.

Developers also need to consider
what the audio playback format will
be. The most common is to use
an MP3. In this case, the selected
microcontroller needs to have a
software stack that supports MP3
decoding. This allows the MP3
file to be opened and then pushed
using a dynamic memory access
(DMA) controller out via the I2S
interface. Even the I2S port can be
configured for master/slave and
several other modes, so this needs
to be carefully examined to ensure
that the data is transferred to the
codec at the correct rate.

As mentioned earlier, an external
audio amplifier may or may not
be needed depending on the
application. A typical codec
outputs around 1 to 1.5 watts,
which is useful to drive a small
speaker. To drive a 3 watt or larger
speaker, it will be necessary to
use external amplifier. Again, the
most widely used are Class-D. The
amplifier does not necessarily need
to have variable gain either. The
audio codec can adjust volume
control digitally to provide a wide
range of output power.

One area that is often overlooked
is bulk capacitance. When audio
is playing, it can pull heavily on the
power rails. If there is not enough
capacitance on the board, the
output quality can be dramatically
affected and
can take on
a twangy
sound
along with
several other
unwanted
noises.
This can be
detected
by carefully

monitoring the power rails during
testing. It is not a bad idea during
pc board development to leave
extra footprints on the board to
allow different capacitance values
to be tried in order to tune the
output circuitry.

Tips and tricks for selecting
and using an audio codec

Audio codecs can dramatically
simplify the embedded software
and provide an application with
great sounding audio quality. Audio
codecs can be tricky if a developer
has not worked with them before.
To successfully leverage an audio
codec, there are several ‘tips and
tricks’ teams should keep in mind
such as:

 ■ Use the direct memory access
controller (DMA) feature within
a microcontroller to feed the
audio codec with minimal CPU
intervention. This will help to
ensure that the codec is not
‘starved’ for data

 ■ When audio is not being played,

Figure 3: The Maxim Integrated MAX9867 audio
codec can drive stereo headphones and select
between digital, microphone and line inputs.
Image source: Maxim Integrated

Figure 4: A generalized connection block diagram for an audio
playback system in a typical embedded application shows that there
needs to be storage for audio files, which can be on the microcontroller
or on external memory. Image source: Beningo Embedded Group

use the codecs
mute feature to
prevent low-level

output noise from
reaching the speaker

 ■ When disabling or enabling
playback, use an audio codec’s
soft mute feature to prevent
speaker popping and other
unwanted noise

 ■ Use a terminal application to
output the codec registers after
the codec has been initialized.
This can be especially useful
when attempting to debug
issues or tune the speaker
output circuitry and enclosure

 ■ Leverage the internal digital
filter mechanisms included in a
codec. The digital filters allow a
developer to equalize the output,
filter out unwanted high and low
frequencies, and maximize the
quality of the sound system

 ■ Do not forget that tuning the
sound will only be a useful
endeavor when the circuit board
and speaker are installed in the
enclosure, as the enclosure
and mounting make a huge
difference

To get started, developers
can experiment with the
MAX9867EVKIT+ evaluation kit
for Maxim Integrated’s MAX9867
(Figure 5).

The kit comprises the board and
associated software and comes
configured to send and receive
audio data using the Sony/Philips
digital interface (S/PDIF), though
it can also be set to use I2S. It
has two RCA input jacks, two 3.5
millimeter (mm) analog output
headphone jacks, and fiberoptic
receive and transmit modules. The
software is Windows compatible,
and when connected to a PC over a
USB cable it opens into a graphical
user interface (GUI) through which
the developer can experiment with
the MAX9867’s settings (Figure 6).

Conclusion

Embedded system users have
become accustomed to quality
audio to the point that it is now
expected instead of buzzers and
beeps for alarms, alerts, and
other user audio feedback. This
puts the onus upon development
teams to implement MP3 playback
capabilities in their systems. This
can at first appear to be a complex
endeavor. However, by using the
right audio codec alongside a
microcontroller, and by following
some design best practices,
developers can balance the cost
and complexity associated with
audio applications.

References

1. https://en.wikipedia.org/wiki/
Audio_codec

Figure 5: The MAX9867EVKIT+ eval kit
for the MAX9867 connects to a PC over
a USB cable and features RCA inputs,
headphone outputs, and fiberoptic
transmit and receive modules. Image
source: Maxim Integrated

Figure 6: Using the Windows-based GUI, users can experiment with a wide range of
MAX9867 settings, starting with Clock and Digital Audio (selected tab), all the way to
Registers 1 and Registers 2 (right). (Image source: Maxim Integrated)

How to select and use an audio codec and microcontroller for embedded audio feedback files

https://www.digikey.co.uk/en/articles/best-practices-for-designing-micro-speaker-enclosures
https://www.digikey.co.uk/en/articles/best-practices-for-designing-micro-speaker-enclosures
https://www.digikey.co.uk/en/articles/best-practices-for-designing-micro-speaker-enclosures
https://www.digikey.co.uk/en/products/detail/maxim-integrated/MAX9867EVKIT/MAX9867EVKIT-ND/3740812
https://en.wikipedia.org/wiki/Audio_codec
https://en.wikipedia.org/wiki/Audio_codec

50 51
we get technical

Internet of Things (IoT) sensor-
based applications are expanding,
and so too is the size and
complexity of the microcontroller
firmware in the IoT endpoint. This
firmware must become more
efficient to speed execution,
which is one reason flash
firmware updates in the field are
a necessity. However, securely
updating firmware in the field
usually requires halting execution
of firmware while the update is
in progress. Depending on the
architecture, the size of the update,
and network speed, this can be
accomplished in as quickly as a
minute or as long as an hour. For
critical applications this delay can
be unacceptable.

This article explains the
considerations for updating
interrupt-driven firmware
in the field and the need to
keep executing application
firmware while the update is in
process. It then introduces the
PIC32MZ2048EFH144T-I/PH

Written by Bill Giovino

How to perform firmware
updates without halting
firmware execution

Two factors affecting the
efficiency of interrupt-driven IoT
applications are the efficiency of
the architecture, and the efficiency
of the code. While it is impractical
to change the architecture of a
microcontroller in the field, it is
practical and normal to update the
microcontroller firmware to improve
efficiency.

Sensor-based firmware is
almost always interrupt-driven.
Intelligent sensors connected
to a microcontroller serial port
can generate an interrupt to the
microcontroller to halt normal
execution so the firmware can
vector to an interrupt service
routine for that particular sensor.
This is more efficient than sensors
that need to be periodically
polled to determine if the sensor
reading has new data to transmit.
The advantage of an interrupt-
driven sensor strategy is that the
microcontroller only spends clock
cycles on reading the sensor when
there is useful data to receive.

microcontroller from Microchip
Technology and shows how it can
be used to execute firmware while
simultaneously receiving updated
firmware over a network.

The importance of firmware
updates

Firmware is updated for four main
reasons: to correct bugs in the
code, to add or improve features,
to make adjustments to system
security, and to make firmware
more efficient. Code efficiency
is measured by the number of
clock cycles it takes to perform a
specific task or thread. The fewer
clock cycles to perform a task,
the more efficient the code, which
speeds execution and usually (not
always) reduces code size. This is
especially true for IoT sensor-based
endpoints as these applications
are interrupt-driven and so must
quickly switch context whenever a
sensor or peripheral generates an
interrupt.

2. The clock cycles required to
save the context of the present
CPU state and vector to the
interrupt service routine. This
is architecture dependent and
outside of the control of the
software engineer

3. The clock cycles required to
execute the interrupt service
routine. This depends upon
both the complexity and the
efficiency of the code written by
the software engineer

The more efficient the firmware,
the less likely a conflict will occur
between tasks that need to finish
within a certain period.

Flash firmware update
memory requirements

Systems that need to be reliably
updated in the field require twice
the estimated flash program
memory needed for the application.
This is because the flash memory
must be large enough to contain
both the existing flash firmware and
the updated firmware. However, it is
common for small systems running
only from internal flash program
memory to halt code execution
while the firmware update is being
received over the network. This
can be unacceptable for mission-
critical applications and is contrary
to the target of efficient firmware –
i.e., code that is stopped is running
at zero percent efficiency!

Executing firmware while
updating flash

A high-performance microcontroller
that can execute firmware while
updating the on-chip flash memory
is the Microchip Technology
PIC32MZ2048EFH144T-I/PH
microcontroller (Figure 1). The
PIC32MZ2048EFH144T-I/PH is
based on the MIPS32 M-Class core
architecture with a floating point
unit (FPU) that targets complex
interrupt-driven IoT endpoints.
It has 2 megabytes (Mbytes) of
program memory flash and 512
kilobytes (Kbytes) of SRAM. It also
has 160 Kbytes of boot flash. The
PIC32MZ2048EFH144T-I/PH core
can run as fast as 252 megahertz
(MHz) over a -40°C to +85°C
temperature range, and at 180 MHz
over -40°C to +125°C. Operating
voltage is a low 2.1 volts to 3.6
volts.

It has nine 32-bit capture/compare
timers to support complex firmware
as well as measuring external
signals.

External serial ports include nine
UARTs and five I2C ports. There
are six SPI ports that also support
the audio I2S interface. A 12-bit
analog-to-digital converter (ADC)
with 48 inputs can measure
voltages from precision analog
sensors. With these many
serial ports and ADC inputs, the
PIC32MZ2048EFH144T-I/PH
can interface with many external
sensors, making it appropriate
for complex sensor-based IoT

Polling wastes clock cycles when
firmware has to access the sensor
to read data that is discarded
because the sensor reading has not
updated.

With multiple sensors and tasks
comes multiple subroutines and
interrupt routines to manage them,
increasing code size. Complex
code requires some form of real-
time operating system (RTOS)
to manage all these separate
tasks. The RTOS can be a simple
firmware application written by the
software engineer or an off-the-
shelf product. The RTOS manages
the different firmware tasks to
make sure each individual task
starts and finishes within the time
necessary for the application to
operate properly. If many tasks
need to be managed by the RTOS,
it is beneficial for the application
for tasks to finish in as few clock
cycles as possible. This prevents
different tasks from delaying each
other.

When an interrupt is received,
the time it takes to complete the
interrupt service routine is mostly a
combination of three factors:

1. The clock cycles required to
recognize the interrupt and
begin to vector to the interrupt
service routine. If the task is
lower priority than the task
that is running, this will be
delayed until the present task
is complete. This is application
dependent

https://www.digikey.co.uk/product-detail/en/microchip-technology/PIC32MZ2048EFH144T-I-PH/PIC32MZ2048EFH144T-I-PHCT-ND/9923818
https://www.digikey.co.uk/en/supplier-centers/microchip-technology
https://www.digikey.co.uk/en/supplier-centers/microchip-technology

52 53
we get technical

endpoints. Two CAN 2.0b ports
allow the microcontroller to
network with industrial and
automotive networks that use the
common CAN protocol.

An Ethernet port supports
10/100Base-T networking. A USB
2.0 Hi-Speed controller supports
an external interface for additional
peripherals or debugging and also
supports USB On-The-Go (OTG).

Each of these peripherals can
generate one or more interrupts.
With so many sensors and
interrupt sources, maintaining code
efficiency becomes a necessity.

To improve efficiency the MIPS32
M-Class CPU core has 32 32-
bit general purpose registers
(GPRs). This improves efficiency
by reducing accesses to external
memory. Besides the usual bit set
and clear instructions, the M-Class
also supports single-cycle bit
invert instructions. This improves
RTOS efficiency by increasing the
efficiency of semaphore handling.
The core also has a five-stage
instruction pipeline that improves
efficiency by minimizing memory
access conflicts, resulting in more
single-cycle instructions.

The MIPS32 M-Class also has

seven GPR shadow register sets.
This significantly improves interrupt
performance and context switching
by eliminating the many clock
cycles required to save the GPRs
on the stack. With seven shadow
register sets, the core can nest
interrupts and context switches
seven deep before having to spend
clock cycles saving the GPRs on
the stack.

The PIC32MZ2048EFH144T-I/PH
has two 1 Mbyte banks of program
flash memory (PFM), designated
PFM Bank 1 and PFM Bank 2. Each
PFM has its own dedicated boot
flash memory (BFM) designated
BFM Bank 1 and BFM Bank 2. The
BFM does not need to be updated
during a PFM update. Having these
two separate banks of memory has
multiple advantages. For example,
the microcontroller supports dual
booting, so on power-up it can
be configured to boot from either
flash memory bank. This allows
the microcontroller to support two
different device configurations.

The two banks of flash also
provide the added advantage of
allowing firmware execution from
one flash bank while updating the
firmware in the other flash bank.
Microchip refers to this as Live-
Update, also referred to as run-
time self-programming (RTSP).
When RTSP is initiated in an active
IoT endpoint executing firmware
out of PFM Bank 1, firmware is
received over the network in blocks.
The recommended method for
managing firmware updates over a

How to perform firmware updates without halting firmware execution

Figure 1: The 252 MHz Microchip Technology PIC32MZ2048EFH144T-I/PH is
based on the MIPS32 M-Class architecture and has a wide range of serial ports for
interfacing to external sensors. Image source: Microchip Technology

network is to store the block of new
firmware in SRAM. After receiving
a complete block, the firmware
executing out of PFM Bank 1 can
initiate a programming sequence
of the SRAM data into PFM Bank
2. While this firmware is being
programmed, firmware execution
out of PFM Bank 1 can continue.

When the block programming is
completed, firmware can request
the next block of code over
the network and the sequence
repeats. This continues until the
block of code in PFM Bank 2 is
completed. Once the programming
is complete, firmware can configure
the PIC32MZ2048EFH144T-I/
PH on the next reset to boot from
BFM Bank 2 and execute the new
firmware in PFM Bank 2 by clearing
the SWAP bit in the NVMCON
configuration register (Figure 2).
If the PIC32MZ2048EFH144T-I/
PH firmware must be updated
again while SWAP=0, firmware
can execute out of PFM Bank 2
while simultaneously updating
PFM Bank 1.

The status of the SWAP bit can
be changed from either the BFM
or the PFM depending upon the
needs of the firmware.

Developing dual-boot
firmware

For development with the
PIC32MZ2048EFH144T-I/
PH microcontroller, Microchip
Technology provides the
DM320007 PIC32MZ starter kit
(Figure 3). This board supports
multiple serial ports using
dedicated connectors as well as
header connectors. A USB Host
port is used for debugging while a
USB OTG port can be used for the
application. A USB-to-UART/I2C
connector, when connected to a
PC USB port, creates a virtual COM
port on a connected host PC. This
allows the host PC to communicate
to the I2C port on the PIC32MZ.

A 40-pin expansion header
connector allows access to

additional I2C, SPI, and UART ports
as well as general purpose I/O
(GPIO) pins on the PIC32MZ EF.
There are three pushbuttons and
three LEDs that can be configured
by firmware.

Conclusion

IoT sensor endpoints in critical
systems are demanding higher
memory requirements due to
increased code complexity. The
more complex the code, the more
it is necessary to improve firmware
efficiency in order to improve
the response times of context
switching in the firmware. By
selecting a microcontroller that can
efficiently run interrupt-driven code
that can simultaneously retrieve
and update firmware, developers
can improve the reliability of critical
IoT applications without sacrificing
performance.

Figure 2: The PIC32MZ2048EFH144T-I/PH microcontroller
has two independent banks of PFM. If SWAP=1, firmware can
run out of PFM Bank 1 while PFM Bank 2 is being updated.
Clearing SWAP=0 allows the microcontroller to boot out of
PFM Bank 2. Image source: Microchip Technology

Figure 3: The Microchip Technology
DM320007 compact starter kit
supports the development and testing
of USB and Ethernet applications
with the PIC32MZ2048EFH144T-I/PH
microcontroller. It includes connectors
for USB OTG, USB Host, 10/100
Ethernet, and UART/I2C. Image source:
Microchip Technology

https://www.digikey.co.uk/product-detail/en/microchip-technology/DM320007/DM320007-ND/5401234

54 55
we get technical

Written by Jeff Shepard

How to implement Time
Sensitive Networking
to ensure deterministic
communication

Deterministic communication
is vital in various applications
such as autonomous robotics
and other Industry 4.0 systems,
5G communications, automotive
advanced driver assistance
systems (ADAS), and real-time
streaming services. The IEEE
802 Ethernet standards, called
Time Sensitive Networking (TSN),
have been expanded to support
deterministic communication.
Properly implemented, TSN can be
interoperable with non-TSN devices,
but deterministic communication
is only available between TSN-
enabled devices. There are

numerous IEEE 802 standards to
coordinate when implementing
TSN and ensure that it delivers both
deterministic communication and
interoperability, making it complex
and time-consuming to design TSN
into networking equipment from
scratch.

Instead, designers of networking
equipment can turn to
microprocessor units (MPUs)
with built-in TSN functionality to
speed time to market and reduce
development risks. This article
reviews the basics of TSN operation
and implementation, introduces

and automotive environments.
Some of the key IEEE 802.1 TSN
sub-standards include (Table 1):

 ■ IEEE 802.1 AS – timing &
synchronization

 ■ IEEE 802.1Qbv – time-aware
shaper

 ■ IEEE 802.3Qbr – interspersed
express traffic

 ■ IEEE 802.1Qbu – frame
preemption

 ■ IEEE 802.1Qca – path control &
reservation

 ■ IEEE 802.1CB – redundancy
 ■ IEEE 802.1 Qcc – enhancements

and improvements for stream
reservation

 ■ IEEE 802.1 Qch – cyclic queuing
& forwarding

 ■ IEEE 802.1Qci – per-stream
filtering and policing

 ■ IEEE 802.1CM – time-sensitive
network for fronthaul

IEEE TSN can be partitioned
into four categories of sub-

standards that are required to
ensure the operation of TSN. Time
synchronization is the bedrock
to ensure the synchronization of
clocks across a network. 802.1AS,
also called 802.1ASrev, is the
primary sub-standard related to
synchronization.

Another group of sub-standards
relates to bounded low latency.
Support for bounded low latency is
a necessary condition for achieving
determinism in data transmissions
and is defined with five sub-
standards: 802.1Qat (credit-based
shaper), 802.3Qbr (interspersed
express traffic), 802.1Qbu (frame
preemption), 802.1Qbv (time aware
shaper (TAS)), 802.1Qav (cyclic
queuing and forwarding), and
802.1Qcr (asynchronous traffic
shaping).

Ultra-reliability is required to deal
with faults, errors, and provide
redundancy and related functions.

some of the many IEEE 802.1
standards for implementing TSN,
considers how IEC/IEEE 60802
relates to TSN, and compares TSN
with other protocols like EtherCAT,
ProfiNet, and EtherNet/IP. It
then presents MPUs from Texas
Instruments, NXP, and Renesas
that include TSN capability, along
with development platforms
that support the integration of
deterministic networking into
Industry 4.0 devices.

Prior to the development of TSN,
real-time networking was only
available on specialized industrial
field buses. Field buses are often
referred to as the ‘industrial
Ethernet’. The 802.1 TSN standards
define layer-2 functions and local
area networking (LAN) level
switching and add the concepts
of time and synchronization. TSN
does not replace protocols at levels
above layer-2 and does not define
the software interface or hardware
configurations and features,
making it compatible with various
application programming interfaces
(APIs) (Figure 1).

Existing TSN traffic shaping
algorithms enable the co-existence
of real-time traffic with regular
best-effort traffic within standard
Ethernet networks. Determinism
and low latency can be guaranteed
for time-critical communication.
That can support the deployment of
safety-related systems in industrial

Figure 1: TSN standards define layer 2 functions and can
coexist with various APIs. Image source: Texas Instruments

https://www.digikey.co.uk/en/supplier-centers/texas-instruments
https://www.digikey.co.uk/en/supplier-centers/texas-instruments
https://www.digikey.co.uk/en/supplier-centers/nxp-semiconductors
https://www.digikey.co.uk/en/supplier-centers/renesas-electronics-america

56 57
we get technical

Related sub-standards include:
802.1CB (frame replication
and elimination), 802.1Qca
(path control and reservation),
802.1qci (per-stream filtering and
policing), and parts of 802.1AS
and 802.1AVB (reliability for time
synchronization from the timing
and synchronization parts of
TSN and the IEEE audio bridging
standard).

There is a group of general sub-
standards related to dedicated
resources, APIs, and other
necessary ‘overhead’ features
including higher level planning and
configuration and interoperability in
heterogeneous networks. Examples
of these general sub-standards

include: 802.1Qat (stream
reservation protocol), P802.1Acc
(TSN configuration), compatibility
with YANG (Yet Another Next
Generation) data modelling
language, and 802.1Qdd (resource
allocation protocol).

The modular design of TSN enables
it to be optimized for specific
applications and use cases. Not
every feature is needed every time.
For example, 802.1AS, timing and
synchronization are especially
important in all factory automation
uses of TSN while redundancy may
be required by only a subset of
automation use cases.

How does IEC/IEEE 60802
relate to TSN?

At the time of this writing, the IEC/
IEEE 60802, Draft 1.4, TSN Profile
for Industrial Automation is out for
comment and is expected to be
approved sometime in 2023. This
IEC SC65C/WG18 and IEEE 802
project will define TSN profiles for
industrial automation. This joint
effort will include profile select
features, options, configurations,
defaults, protocols, and procedures
of bridges, end stations, and LANs
to build industrial automation
networks. Like the existing IEEE
802 TSN standards, 60802 will be
flexible and modular and address a
range of networking scenarios.

How to implement Time Sensitive Networking to ensure deterministic communication

Table 2: EtherCAT, PROFINET
and TSN have similar
features, but implement them
in different ways. Image
source: Texas Instruments

IEC/IEEE 60802 will go beyond
the IEEE 802 standards and is
being developed in recognition of
the fact that users and vendors
of interoperable bridged time-
sensitive networks for industrial
automation need guidelines
for the selection and the use
of TSN related standards and
features in order to effectively
deploy converged networks
that simultaneously support
operations technology traffic and
other traffic. The release of the
IEC/IEEE 60802 TSN Profile for
Industrial Automation could prove
to be a source of confusion, at
least initially, since various field
buses are often referred to as the
‘industrial Ethernet’.

TSN and field buses

The use of TSN and field buses is
not an either-or proposition. They
are compatible, often used together
and all employ concepts related
to time synchronization. Yet field
buses like PROFINET, EtherNet/

IP, and EtherCAT, implement
synchronization in different ways.
PROFINET uses the precision time
control protocol (PTCP). EtherCAT
uses distributed clocks that employ
dedicated and associated registers
for synchronization.

PROFINET and EtherNet/
IP include the IEEE Ethernet
learning bridge as the underlying
switching technology. As a result,
these protocols can now adapt
the extension of TAS and frame
preemption to use standard TSN
hardware. EtherNet/IP uses UDP
packets for data exchange and is
compatible with the TSN switching
layer. PROFINET supports a direct
layer-2 buffer model for data
supported by the programmable
real-time unit industrial
communications subsystem (PRU-
ICSS) TSN solution.

TSN is designed to support
cycle times at least as low as
EtherCAT and PROFINET and
other industrial Ethernet protocols.
When upgraded to Gigabit
Ethernet, TSN is expected to

exceed the performance
of the other protocols.
Support for deterministic
traffic in EtherCAT is

limited to special types of data
packets. Using EtherCAT and
TSN in combination can improve
flexibility. For example, around
synchronization, TSN adds multi-
master capabilities. All three
protocols provide redundancy
in different ways. TSN uses
a technique like the parallel
redundancy protocol (PRP) and
the high-availability seamless
redundancy (HSR) protocol as
defined in IEC 62439-3 implement
zero-loss redundancy (Table 2).

TSN does not include an
application layer and does not
challenge field buses at the
application level. For example,
interconnecting machines with
switches while still using EtherCAT
at the machine level can create
an industrial Ethernet network
that includes TSN functions. A
TSN-EtherCAT integrated network
does not mix the technologies but
defines a seamless integration to
use both technologies and realize
the best performance aspects of
each one.

Table 1: TSN relies on numerous sub-standards to provide deterministic performance,
redundancy, and other features in a modular fashion. Image: Texas Instruments

58 59
we get technical

MCU with up to 6 TSN ports

Designers of Industry 4.0
embedded devices that need
TSN connectivity can turn to
the AM652x Sitara processors
from Texas Instruments like the
AM6528BACDXEA. These MCUs
combine two Arm Cortex-A53 cores
with a dual Cortex-R5F and three

programmable real-
time unit and industrial
communication
subsystem Gigabit
(PRU_ICSSG)
subsystems that can
be used to provide up
to six ports of industrial

Ethernet including TSN, PROFINET,
EtherCAT, and other protocols,
or they can be used for standard
Gigabit Ethernet connectivity
(Figure 2).

The AM652x family of MCUs
includes secure boot and
cryptographic acceleration in
addition to granular firewalls
managed by the device
management and security control

(DMSC) subsystem. Additionally,
the dual Cortex-R5F MCU
subsystem is available for general
purpose use as two individual
cores, or the cores can be used
in lockstep for functional safety
applications.

MCU with CC-Link IE TSN
stack

NXP’s i.MX RT1170
crossover MCUs, like the
MIMXRT1176DVMAA, have a
dual-core architecture with a
high-performance Cortex-M7
core (running up to 1 GHz) and a
power-efficient Cortex-M4 core
(running up to 400 MHz). This

Figure 2: The AM652x Sitara processors include six
ports that can be used for TSN and other industrial
Ethernet protocols. Image source:
Texas Instruments

Figure 3: The i.MX RT1170 MCUs from NXP include a dedicated TSN functional block
(inside the black oval). Image source: NXP

dual-core architecture helps enable
applications to run in parallel and
supports power consumption
optimization by turning off
individual cores as necessary.
These MCUs deliver a full CC-Link
IE TSN communication stack and
are optimized to support real-time
operations and deliver a 12 ns
interrupt response time.

To speed the development of
machine learning (ML) applications,
real-time motor control, advanced
human machine interfaces
(HMI) like facial recognition, and
other Industry 4.0 applications,
NXP offers the MIMXRT1170-
EVKB evaluation kit (Figure 4).
This eval kit is built on a 6-layer
printed circuit board (PCB) with
through hole design for better
electromagnetic compatibility
(EMC) performance and it includes
two Ethernet ports for development
of TSN connectivity.

MCU and starter kit for TSN

The RZ/N2L family of MCUs, like
the R9A07G084M04GBG#AC0,

from Renesas are
designed to simplify the
implementation of industrial
Ethernet and TSN in
Industry 4.0 applications.
They enable deterministic
communications through
a 3-port Gigabit Ethernet
switch that supports TSN,
EtherCAT, PROFINET,
EtherNet/IP, and OPC UA.
Renesas also offers the
RTK9RZN2L0S00000BE
Starter Kit+ for RZ/N2L
MCUs. This starter kit
includes extensive peripheral
functions suitable for industrial
applications and supports
the evaluation of industrial
Ethernet and TSN (Figure 7).
The kit includes all the needed
hardware and software:

 ■ Hardware
 ■ CPU board with RZ/N2L MCU

and on-board emulator
 ■ Power supply USB cable (Type

C to Type C)
 ■ On-board emulator connection

USB cable (Type A to Type
Micro B)

 ■ PC terminal debugging USB
cable (Type A to Type Mini B)

 ■ Software
 ■ The development environment,

sample code, and application
notes are available on the
web which also includes a
software support package
with peripheral drivers
and numerous application
examples for rapid evaluation
and prototyping

Summary

TSN has been added to the
IEEE 802.1 Ethernet standards
to support the development of
deterministic communications.
TSN defines layer-2
communications functions and
is compatible with higher level
protocols such as EtherCAT,
PROFINET, EtherNet/IP, and others.
It will soon be embodied in an
international standard, IEC/IEEE
60802, TSN Profile for Industrial
Automation. Suppliers have already
begun integrating TSN into MCUs
and related development platforms
to help designers rapidly integrate
deterministic communications into
the next generation of Industry 4.0
devices.

Figure 4: NXP’s MIMXRT1170-EVKB
evaluation kit. Image source: NXP

Figure 5: The RTK9RZN2L0S00000BE Starter
Kit+ includes the necessary hardware and
software, plus application examples, to support
development of deterministic networking.
Image source: Renesas

How to implement Time Sensitive Networking to ensure deterministic communication

https://www.digikey.co.uk/en/products/detail/texas-instruments/AM6528BACDXEA/15205122
https://www.digikey.co.uk/en/products/detail/nxp-usa-inc/MIMXRT1176DVMAA/13536101
https://www.digikey.co.uk/en/products/detail/nxp-usa-inc/MIMXRT1170-EVKB/19528850
https://www.digikey.co.uk/en/products/detail/nxp-usa-inc/MIMXRT1170-EVKB/19528850
https://www.digikey.co.uk/en/products/detail/renesas-electronics-america-inc/R9A07G084M04GBG-AC0/16674725
https://www.digikey.co.uk/en/products/detail/renesas-electronics-america-inc/RTK9RZN2L0S00000BE/16674722

60

