
1
we get technical

We get
technical
Real-Time Operating
Systems (RTOS) and their
applications

How to select and use
the right ESP32 Wi-Fi/
Bluetooth module

IoT security
fundamentals:
connecting securely to
IoT Cloud services

Application layer
protocol options for M2M
and IoT functionality

Wireless Modules I Volume 8

22

co
nt

en
ts

4 Real-Time Operating Systems (RTOS)
and their applications

8
Use a cellular and GPS SiP to
implement asset tracking for
agriculture and smart cities

18 How to select and use the right
ESP32 Wi-Fi/Bluetooth module

24
IoT security fundamentals:
connecting securely to IoT Cloud
services

32 Special feature: retroelectro
The ALOHA System: Task II

40 Application layer protocol options for
M2M and IoT functionality

46
Deploy a secure Cloud-connected IoT
device network complete with Edge
computing capabilities

54
Use rugged multiband antennas
to solve the mobile connectivity
challenge

60
Getting started with Zephyr: a
developer’s guide to your first
project

3
we get technical

Editor’s note
In the dynamic world of technology, wireless
communication stands as a cornerstone of
modern innovation, reshaping how we interact
with our surroundings and with each other.

Wireless technology, at its core, is the
transmission of information over a distance
without the need for wires, cables, or any other
physical connection. This seemingly simple
concept has revolutionized communication,
enabling not just cell phone calls and text
messages, but also the rapid expansion of the
Internet, media streaming, and much more. The
impact of wireless technology extends beyond
personal communication, deeply embedding
itself in various sectors such as healthcare,
automotive, and the burgeoning field of the
Internet of Things (IoT).

The future trajectory of wireless technology
is towards faster, more reliable, and more
pervasive networks. The ongoing rollout of
5G technology promises not only higher data
rates and reduced latency but also the ability
to connect a massive number of devices
simultaneously. This leap forward presents
engineers with both opportunities and
challenges, requiring innovative solutions in
network infrastructure, signal processing, and
application development.

Wireless technology is a dynamic and ever-
evolving field that demands a multidisciplinary
approach from engineers. Its profound impact
on various sectors makes it an exciting area
for engineering exploration and innovation.
As we move forward, the role of engineers will
be pivotal in shaping the future of wireless
communication, ensuring its growth, efficiency,
and security.

For more information,
please check out our website at
www.digikey.com/automation.

4

Real-Time Operating
Systems (RTOS) and their
applications

Written by:
Lim Jia Zhi, Senior Embedded
Software Engineer at DigiKey

5
we get technical

A Real-Time Operating System
(RTOS) is a lightweight OS used
to ease multitasking and task
integration in resource and time
constrained designs, which is
normally the case in embedded
systems. Besides, the term ‘real-
time’ indicates predictability/
determinism in execution time
rather than raw speed, hence an
RTOS can usually be proven to
satisfy hard real-time requirements
due to its determinism.

Key concepts of RTOS are:

Task

Tasks (could also be called
processes/threads) are
independent functions running
in infinite loops, usually each
responsible for one feature. Tasks
are running independently in their
own time (temporal isolation) and
memory stack (spatial isolation).
Spatial isolation between tasks can
be guaranteed with the use of a
hardware memory protection unit
(MPU), which restricts accessible
memory region and triggers fault
exceptions on access violation.
Normally, internal peripherals
are memory-mapped, so an MPU
can be used to restrict access to
peripherals as well.
Tasks can be in different states:

 ■ Blocked – task is waiting for
an event (e.g., delay timeout,
availability of data/resources)

 ■ Ready – task is ready to run on
CPU but not running because
CPU is in use by another task

 ■ Running – task is assigned to be
running on CPU

Scheduler

Schedulers in RTOS control
which task to run on the CPU, and
different scheduling algorithms are
available. Normally they are:

 ■ Pre-emptive – task execution
can be interrupted if another task
with higher priority is ready

 ■ Co-operative – task switch
will only happen if the current
running task yields itself

Pre-emptive scheduling allows
higher priority tasks to interrupt a
lower task in order to fulfil real-time
constraints, but it comes in the
cost of more overhead in context
switching.

Inter-task communication
(ITC)

Multiple tasks will normally need
to share information or events
with each other. The simplest way
to share is to directly read/write
shared global variables in RAM, but
this is undesirable due to risk of
data corruption caused by a race
condition. A better way is to read/
write file-scoped static variables
accessible by setter and getter
functions, and race conditions can
be prevented by disabling interrupts
or using a mutual exclusion object
(mutex) inside the setter/getter
function. The cleaner way is using
thread-safe RTOS objects like
message queue to pass information
between tasks.

Besides sharing of information,
RTOS objects are also able to
synchronize task execution

because tasks can be blocked
to wait for availability of RTOS
objects. Most RTOS have objects
such as:

 ■ Message queue
 ■ First-in-first-out (FIFO) queue
to pass data

 ■ Data can be sent by copy or
by reference (pointer)

 ■ Used to send data between
tasks or between interrupt
and task

 ■ Semaphore
 ■ Can be treated as a reference
counter to record availability
of a particular resource

 ■ Can be a binary or counting
semaphore

 ■ Used to guard usage of
resources or synchronize
task execution

 ■ Mutex
 ■ Similar to binary semaphore,
generally used to guard
usage of a single resource
(MUTual EXclusion)

 ■ FreeRTOS mutex comes
with a priority inheritance
mechanism to avoid priority
inversion (condition when
high priority task ends up
waiting for lower priority
task) problem

 ■ Mailbox
 ■ Simple storage location to
share a single variable

 ■ Can be considered as a
single element queue

 ■ Event Group
 ■ Group of conditions
(availability of semaphore,
queue, event flag, etc.)

 ■ Task can be blocked and
can wait for a specific

6

combination condition to be
fulfilled

 ■ Available in Zephyr as a
Polling API, in FreeRTOS as
QueueSets

System tick

RTOS need a time base to measure
time, normally in the form of
a system tick counter variable
incremented in a periodic hardware
timer interrupt. With system tick,
an application can maintain more
than time-based services (task
executing interval, wait timeout,
time slicing) using just a single
hardware timer. However, a higher
tick rate will only increase the RTOS
time base resolution, it will not
make the software run faster.

Why use RTOS?

Organization
Applications can always be
written in a bare metal way, but
as the code complexity increases,
having some kind of structure
will help in managing different
parts of the application, keeping
them separated. Moreover, with
a structured way of development
and familiar design language, a
new team member can understand
the code and start contributing
faster. RFCOM Technologies has
developed applications using
different microcontrollers like
Texas Instruments’ Hercules,
Renesas’ RL78 and RX, and
STMicroelectronics’ STM32

on a different RTOS. Similar
design patterns allow us to
develop applications on different
microcontrollers and even a
different RTOS.

Modularity
Divide and conquer. By separating
features in different tasks, new
features can be added easily
without breaking other features,
provided that the new feature does
not overload shared resources
like the CPU and peripherals.
Development without RTOS will
normally be in a big infinite loop
where all features are part of the
loop. A change to any feature within
the loop will have an impact on
other features, making the software
hard to modify and maintain.

Communication stacks and
drivers
Many extra drivers or stacks like
TCP/IP, USB, BLE stacks, and
graphics libraries are developed/
ported for/to existing RTOSs. An
application developer can focus
on an application layer of the
software and reduce time to market
significantly.

Tips

Static allocation
Use of static allocation of memory
for RTOS objects means reserving
memory stack in RAM for each
RTOS object during compile
time. An example of a static
allocation function in freeRTOS is
xTaskCreateStatic(). This ensures

that a RTOS object can be created
successfully, saving the hassle of
handling a possible failed allocation
and making the application more
deterministic.

In terms of deciding stack size
needed for a task, the task can
be run with a bigger (more than
enough) stack size and then the
stack usage can be checked in
runtime to determine the high-
water mark. There is a static stack
analysis tool available as well.

Operating system abstraction
layer (OSAL) and meaningful
abstraction
Just like Hardware Abstraction
Layer (HAL), use of the RTOS
abstraction layer allows application
software to migrate easily to other
RTOSs. Features of RTOSs are
quite similar, so creating OSAL
should not be too complicated. For
example:

Using the freeRTOS API directly:

if(xSemaphoreTake(spiMutex, (
TickType_t) 10) == pdTRUE) { //
dosomething }

Wrapping the RTOS API into OSAL:

if(osalSemTake(spiMutex, 10) ==
true) { //dosomething }

Using the abstraction layer on inter-
task communication to make code
more readable and minimize the
scope of an RTOS object:

if(isSpiReadyWithinMs(10)) { //
doSomething }

Additionally, the abstraction also
allows a programmer to change
the RTOS object used underneath

Real-Time Operating Systems (RTOS) and their applications

https://www.digikey.com/en/design-services-providers/rfcom-technologies-pte-ltd
https://www.digikey.com/en/supplier-centers/texas-instruments
https://www.digikey.com/en/products/result?s=N4IgjCBcoLQdIDGUAuAnArgUwDQgPZQDaIATAJwBsIAungA4pQggC%2BeMpUoyk62eQpBLlaDJpBat2ZYiAAWWNIgwAbLAGdarIA
https://www.digikey.com/en/supplier-centers/renesas-electronics-america
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcpgnAHLKoDGUBmBDANgZwKYA0IA9lANogAMIAusQA4AuUIAykwE4CWAdgOYgAvsQC0EaCDSQuAVyKkKIAKzKk9EM1bCRIAExLO2AOzw6QoA
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcpgnAHLKoDGUBmBDANgZwKYA0IA9lANogAMIAusQA4AuUIAykwE4CWAdgOYgAvsQC0EaCDSQuAVyKkKIAKzKk9EM1bCRIAExLOADzpCgA
https://www.digikey.com/en/supplier-centers/stmicroelectronics
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcoLQdIDGUAuAnArgUwDQgPZQDaIALAJwDsIAungA4pQggC%2BeMATFKMpOtjyFIJcrQZNILVuxDcRIAM4oAtgGZuNVkA

7
we get technical

(e.g., from mutex to counting
semaphore) if there is more than
one SPI module available. OSAL
and other abstraction layers help
in software testing as well by
simplifying mock function insertion
during unit testing.

Tick interval selection
Ideally, a lower tick rate is better
because of less overhead. To
select a suitable tick rate, the
developer can list down timing
constraints of modules in an
application (repeating interval,
timeout duration, etc.). If there are
some outlier modules needing a
small interval, having a dedicated
timer interrupt can be considered
for the outlier modules rather than
increasing RTOS tick rate. If the
high frequency function is very
short (e.g., write to register to turn
an LED on/off), it can be done
inside an Interrupt Service Routine
(ISR), otherwise deferred interrupt
handling can be used. Deferred

interrupt handling is a technique
of deferring interrupt computation
into an RTOS task, the ISR will only
generate an event through the
RTOS object, then the RTOS task
will be unblocked by the event and
do the computation.

Tick suppression for low
power application
Tickless idle disables tick interrupt
when the system is going idle for
a longer time. One significant way
for embedded firmware to reduce
power consumption is to put the
system in low power mode for
as long as possible. Tickless idle
is implemented by disabling the
periodic tick interrupt and then
setting up a countdown timer to
interrupt when a blocked task
is due to execute. If there is no
task waiting for a timeout, the
tick interrupt can be disabled
indefinitely until another interrupt
occurs (e.g., button pressed). For
example, in the case of a Bluetooth

Low Energy (BLE) beacon, the MCU
can be put into deep sleep between
the advertising interval. As shown
in Figure 1, the beacon is put into
deep sleep mode for most of the
time, consuming power in tens of
µA.

Conclusion

An RTOS provides features like
scheduler, tasks, and inter-task
communication RTOS objects,
as well as communication stacks
and drivers. It allows developers
to focus on the application layer
of the embedded software, and
design multitasking software with
ease and speed. However, just
like any other tools, it has to be
used properly in order to bring out
more value. To create safe, secure,
and efficient embedded software,
developers should know when to
use RTOS features and also how to
configure RTOS.

Figure 1: Current
consumption of a BLE
beacon Credit: RFCOM

8

Use a cellular and GPS
SiP to implement asset
tracking for agriculture
and smart cities
Written by:
Stephen Evanczuk
Contributing Author at DigiKey

9
we get technical

Developers of Internet of Things
(IoT) and asset tracking devices
and systems for industry,
agriculture, and smart cities
need a way to communicate over
long distances at minimal power
for extended periods of time.
Wireless technologies such as
RFID tags, Bluetooth, and Wi-Fi
are already widely used for asset
tracking solutions, but they have
limited range and consume too
much power. What’s required is
a combination of GPS and an
adaptation of infrastructure such as
cellular networks that are already
widely deployed and are designed
for communications at longer
ranges than available with Wi-Fi or
Bluetooth.

LTE-based cellular networks
were originally designed for wide
bandwidth wireless connectivity
for mobile products and devices.
IoT applications, on the other hand,
can get by using lower power,
narrowband cellular technologies
such as long-term evolution for
machines (LTE-M) and Narrowband
IoT (NB-IoT). Still, RF/wireless
design is difficult, and developers
lacking extensive experience,
particularly with respect to cellular,
face great difficulty implementing
a functioning design that optimizes
wireless performance and power
consumption, while also meeting
international regulatory guidelines
for both cellular and GPS location
services, as well as specific carrier
requirements.

This article describes the trends

and design requirements of asset
tracking. It then introduces a GPS
and cellular narrowband system-
in-package (SiP) solution from
Nordic Semiconductor and shows
how it can greatly simplify the
implementation of GPS-enabled
cellular devices for asset tracking
and other agriculture and smart city
IoT applications.

Why asset tracking is
increasingly important

The ability to ship products
efficiently is vital to commerce:
Amazon alone shipped an
estimated five billion packages in
2019, spending almost $38 billion
in shipping costs – a 37% increase
over 2018. For any shipping
company, delays, damage, and
theft place a significant strain on
manufacturers, distributors, and
customers. For Amazon, nearly a
quarter of those shipped packages
were returned, 21% because the
customer received a damaged
package.

Amazon is by no means alone in
allocating a significant portion of
their budget to shipping. According
to the 2020 State of Logistics
report from the Council of Supply
Chain Management Professionals
(CSCMP), companies spent nearly
$1.7 trillion on shipping costs
in 2019 – an expenditure that
accounts for 7.6% of the US gross
national product (GDP). At these
levels, the ability to track packages,
identify delays and instances of

https://www.digikey.com/en/supplier-centers/nordic-semiconductor

10

damage can provide significant
benefit to suppliers and purchasers
to correct shipment problems.

Besides following packages
through the supply chain, most
enterprises need improved
methods for tracking their own
assets and locating misplaced
items. Yet, half of all businesses
still manually log assets, and of
those, many rely on employees to
search through warehouses, plants,
and physical locations to find
missing assets.

Comparing connectivity
technologies for asset
tracking

Although a number of solutions
have emerged to help automate
asset tracking, the underlying
technologies have limited coverage
area, are expensive per unit cost, or
have high power requirements. The
latter is critical as asset tracking
and remote IoT devices are battery-
powered devices.

Conventional tracking methods
based on passive radio frequency
identification (RFID) cannot provide
live data in transit and require
packages to pass through some
physical checkpoint to detect the
RFID tag attached to a package.
Battery-powered active RFID
tags are able to provide real-time
location data but require additional
infrastructure and remain limited in
coverage.

Compared to RFID tags, Bluetooth

low energy (BLE) and Wi-Fi offer
progressively greater range within
a coverage area equipped with
fixed locators for each technology.
Building on a rich ecosystem
of devices and software, BLE
and Wi-Fi are already applied in
location-based applications such
as COVID-19 contact tracing and
conventional real-time location
services (RTLS), respectively. With
the availability of direction-finding
features in Bluetooth 5.1, the
location of a tag can be accurately
calculated based on angle-of-arrival
(AoA) and angle-of-departure (AoD)
data (Figure 1).

While BLE applications remain
limited to short-range applications,
Wi-Fi’s greater range can make it
effective for use in asset tracking
applications within a warehouse or
enterprise campus. Yet, Wi-Fi RTLS
tags are typically expensive devices

with power requirements that
make batteries impractical, thereby
limiting its use to tracking larger,
expensive assets. At the same
time, large-scale deployments
using either of these technologies
can suffer from increasing noise in
their reception bandwidth, leading
to lost or corrupted packets and
degradation of location detection
capabilities.

Despite their potential use for
tracking assets locally, neither
RFID, BLE, nor Wi-Fi can provide the
range of coverage needed to easily
track an asset once it leaves the
warehouse or enterprise campus.
The ability to track a package or
piece of equipment regionally
or even globally depends on the
availability of a wireless technology
able to achieve both extended
reach and low power operation.

Figure 1: Advanced
direction-finding
capabilities in Bluetooth
support precision
location of a tag in
three-dimensional space.
Image source: Nordic
Semiconductor

Use a cellular and GPS SiP to implement asset tracking for agriculture and smart cities

11
we get technical

Alternatives based on low-power
ultra-wideband (UWB) technologies
can achieve significant range,
but network coverage remains
limited. In fact, few alternatives can
provide the kind of global coverage
already available with low-power
wide-area network (LPWAN)
cellular solutions based on LPWAN
technology standards defined
by 3rd Generation Partnership
Project (3GPP) – the international
consortium that defines mobile
communications standards.

Achieving global reach with
cellular connectivity

Among 3GPP standards, those
based on LTE-M and NB-IoT
technologies are designed
specifically to provide a relatively
lightweight cellular protocol well
matched to IoT requirements for
data rate, bandwidth, and power
consumption.

Defined in 3GPP Release 13, LTE
Cat M1 is an LTE-M standard that
supports 1 megabit per second
(Mbit/s) for both downlink and
uplink transfers with 10 to 15
millisecond (ms) latency and 1.4
megahertz (MHz) bandwidth.
Also defined in 3GPP Release 13,
Cat-NB1 is an NB-IoT standard
that offers 26 kilobits per second
(Kbits/s) downlink and 66 Kbits/s
uplink with 1.6 to 10 s latency and
180 kilohertz (kHz) bandwidth.
Defined in 3GPP Release 14,
another NB-IoT standard, Cat-NB2
offers higher date rates at 127

Kbits/s downlink and 159 Kbits/s
uplink.

Although the specific
characteristics of these two broad
classes of LPWAN technology
lie well beyond the scope of
this brief article, both can serve
effectively for typical asset tracking
applications. Combined with
sensors and global positioning
satellite (GPS) capabilities in
compact packages, asset tracking
solutions based on LTE-M or NB-IoT
based cellular LPWANs can support
the kind of capabilities required for
asset management and end-to-end
logistics.

Given LPWAN’s potential for
achieving greater efficiency and
cost savings, cellular LPWAN
continues to play a greater role
in logistics. With the availability
of the nRF9160 SiP from Nordic
Semiconductor, developers can
more quickly and easily serve
the growing demand for LPWAN-
based devices needed for more
effective asset tracking or other IoT
applications.

How a SiP device can
deliver a drop-in asset
tracking solution

Nordic Semiconductor’s low-power
nRF9160 SiP device combines
a Nordic Semiconductor nRF91
system-on-chip (SoC) device
with support circuitry to provide
a complete LPWAN connectivity
solution in a single 10 x 16 x
1.04 millimeter (mm) land grid

array (LGA) package. Along
with an Arm Cortex-M33-based
microcontroller dedicated to
application processing, nRF91 SoC
variants integrate an LTE-M modem
in the NRF9160-SIAA SiP, NB-IoT
modem in the NRF9160-SIBA SiP,
and both LTE-M and NB-IoT as
well as GPS in the NRF9160-SICA
SiP. Furthermore, the nRF9160
SiP is pre-certified to meet global,
regional and carrier cellular
requirements, allowing developers
to quickly implement cellular
connectivity solutions without the
delays typically associated with
compliance testing.

All SiP versions combine the
microcontroller-based application
processor and modem with an
extensive set of peripherals,
including a 12-bit analog-to-digital
converter (ADC) often needed in
sensor designs. The SiP further
packages the SoC with an RF front-
end, power management integrated
circuit (PMIC), and additional
components to create a drop-in
solution for LPWAN connectivity
(Figure 2).

Serving as the host processor, the
SoC’s microcontroller integrates
a number of security capabilities
designed to meet the growing
demand for security in connected
devices, including IoT devices
and asset tracking systems.
Building on the Arm TrustZone
architecture, the microcontroller
embeds an Arm Cryptocell security
block, which combines a public
key cryptography accelerator

https://www.digikey.com/en/product-highlight/n/nordic-semi/nrf9160-sip
https://www.digikey.com/en/supplier-centers/arm
https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF9160-SIAA-R7/1490-NRF9160-SIAA-R7CT-ND/10498921
https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF9160-SIBA-R7/1490-NRF9160-SIBA-R7CT-ND/11476052
https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF9160-SICA-R/1490-NRF9160-SICA-RCT-ND/13165676

12

with mechanisms designed to
protect sensitive data. In addition,
a secure key management unit
(KMU) provides secure storage
for multiple types of secret data
including key pairs, symmetric
keys, hashes, and private data. A
separate system protection unit
(SPU) also provides secure access
to memories, peripherals, device
pins and other resources.

In operation, the SoC’s
microcontroller serves as the host,
executing application software as
well as starting and stopping the
modem. Other than responding to
start and stop commands from the
host, the modem handles its own
operations using its substantial
complement of integrated blocks
including a dedicated processor,
RF transceiver, and modem
baseband. Running its embedded

firmware, the modem fully supports
3GPP LTE release 13 Cat-M1 and
Cat-NB1. Release 14 Cat-NB2 is
supported in hardware but requires
additional firmware to operate.

How the nRF9160 SiP
achieves low power cellular
connectivity

The nRF9160 SiP combines
its extensive hardware
functionality with a full set of
power management features. Its
included PMIC is supported by a
power management unit (PMU)
which monitors power usage and
automatically starts and stops
clocks and supply regulators to
achieve the lowest possible power
consumption (Figure 3).

Along with a System OFF power
mode, which maintains power only
to circuits needed to wake the
device, the PMU supports a pair
of System ON power sub modes.
After power-on-reset (POR), the
device comes up in the low-power
sub mode, which places functional
blocks including the application
processor, modem, and peripherals
in an idle state. In this state, the
PMU automatically starts and stops
clocks and voltage regulators for
different blocks as needed.

Figure 3: The nRF9160 SiP includes a
PMU that automatically controls clocks
and supply regulators to optimize power
consumption. Image source: Nordic
Semiconductor

Use a cellular and GPS SiP to implement asset tracking for agriculture and smart cities

Figure 2: The Nordic Semiconductor nRF9160 SiP combines an SoC with
application processor and LTE modem with other components needed to
implement a compact low power cellular-based design for asset tracking or other
IoT applications. Image source: Nordic Semiconductor

13
we get technical

Developers can override the default
low-power sub mode, switching
instead to a constant latency sub
mode. In constant latency sub
mode, the PMU maintains power
to some resources, trading an
incremental increase in power
consumption for the ability to
provide a predictable response
latency. Developers can invoke a
third power mode using the external
enable pin, which powers down
the entire system. This capability
would typically be used in a system
design that uses the nRF9160 SiP
as a communications coprocessor
controlled by the host system’s
main processor.

These power optimization features
enable the SiP to achieve the kind
of low power operation needed
to ensure extended battery life
in an asset tracking device. For
example, with the microcontroller
in the idle state and the modem
powered down, the SiP consumes
only 2.2 microamps (μA) with the
real-time counter active. With the
microcontroller and modem both
off and power maintained only to
the general-purpose input output
(GPIO)-based wakeup circuitry, the
SiP consumes only 1.4 μA.

The SiP continues to achieve
low power operation while
executing various processing
loads. For example, running
the CoreMark benchmark with
a 64 MHz clock requires only
about 2.2 milliamps (mA). Of
course, as more peripherals are
enabled, power consumption rises

accordingly. Still, many sensor-
based monitoring applications
can often operate effectively at
reduced operating rates that help
maintain low power operation. For
example, current consumption
for the integrated differential
successive approximation register
(SAR) ADC drops from 1288 mA to
less than 298 mA when switching
from a high accuracy clock to a
low accuracy clock for sampling in
either scenario at 16 kilosamples
per second (Ksamples/s).

The device also uses other power
optimization features for its other
functional blocks including GPS. In
normal operating mode, continuous
tracking with GPS consumes about
44.9 mA. By enabling a GPS power
saving mode, current consumption
for continuous tracking drops
to 9.6 mA. By reducing the GPS
sampling rate from continuous to
every two minutes or so, developers
can significantly reduce power.
For example, the GPS module
consumes only 2.5 mA when
performing a single-shot GPS fix
every two minutes.

The device’s support for other
power saving operating modes
also extends to the nRF9160
SiP’s modem. With this device,
developers can enable modem
features supporting special cellular
protocols designed specifically to
reduce power in battery-powered
connected devices.

Utilizing low power cellular
protocols

As with any wireless device, the
largest contributor to power
consumption, besides the host
processor, is typically the radio
subsystem. Conventional cellular
radio subsystems take advantage
of power saving protocols built into
the cellular standard. Smartphones
and other mobile devices
typically use a capability called
discontinuous reception (DRX),
which allows the device to turn
off its radio receiver for a period
of time supported by the carrier
network.

Similarly, the extended
discontinuous reception (eDRX)
protocol lets low power devices
such as battery-operated asset
trackers or other IoT devices
specify how long they plan to
sleep before checking back in with
the network. By enabling eDRX
operation, an LTE-M device can
sleep up to about 43 minutes while
an NB-IoT device can sleep up to
about 174 minutes, dramatically
extending battery life (Figure 4).

Another cellular operating mode,
called power save mode (PSM),
enables devices to remain
registered with the cellular network
even while they are in sleep mode
and unreachable by the network.
Normally, if a cellular network is
unable to reach a device within
some period of time, it will
terminate the connection with the
device and require the device to

14

execute a reattachment procedure
that consumes an incremental
amount of power. During long-term
operation of a battery-powered
device, this repeated small
consumption of power can exhaust
or significantly reduce battery
charge.

A device enables PSM by providing
the network with a set of timer
values that indicate when it will
periodically become available and
how long it will remain reachable
before returning to sleep mode
(Figure 5).

Because of the PSM negotiation,
the carrier network does not
detach the device. In fact, the
device can wake at any time and
resume communications. The
benefit is that it uses its low power
sleep mode when it has nothing
to communicate without losing
its ability to wake as needed and
instantly communicate.

The nRF9160 SiP supports both
eDRX and PSM, enabling the device
to maintain operation with minimal

power consumption. When in its
unreachable stage with PSM, the
device consumes only 2.7 μA.
eDRX uses only slightly more
current, consuming 18 μA in Cat-M1
operation or 37 μA in Cat-NB1
operation while using cycles of
82.91 seconds.

Developing low power
asset tracking solutions

Implementing the hardware design
for an asset tracking device based
on the nRF9160 SiP requires few

additional parts beyond decoupling
components, antennas, and those
needed for separate matching
networks for GPS and LTE antennas
(Figure 6).

Developers can easily combine
the nRF9160 SiP with a
Bluetooth device, such as Nordic
Semiconductor’s NRF52840
Bluetooth wireless microcontroller
and sensors, to implement a
sophisticated sensor-based GPS
enabled cellular asset tracker that
provides users with access to data
through their smartphones and
other Bluetooth enabled mobile
devices.

Nordic Semiconductor further
helps developers quickly begin
evaluating cellular-based designs
through a pair of development kits.
For rapid prototyping of sensor-
based asset tracking applications,
the Nordic Semiconductor
NRF6943 THINGY:91 cellular
IoT development kit provides a
complete battery-powered sensor

Sleep

Up to 40- minutes vs. today’s
upper limit of 2.56 seconds

Sleep

Time

eDRX

D
at

a
tr

an
sf

er

Device not reachable

Time

PSM

D
at

a
tr

an
sf

er

D
at

a
tr

an
sf

er

Figure 4: The nRF9160 SiP’s modem supports
extended discontinuous reception which allows
devices to achieve dramatic power savings by
sleeping for a period of time negotiated with
the cellular network. Image source: Nordic
Semiconductor

Use a cellular and GPS SiP to implement asset tracking for agriculture and smart cities

Figure 5: The cellular PSM protocol allows devices to take advantage
of low power sleep modes without incurring the power costs of
reattachment by negotiating specific periods when they are not
reachable. Image source: Nordic Semiconductor

https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF52840-QIAA-R/1490-1071-1-ND/7725416
https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF6943/1490-1077-ND/10291811

15
we get technical

system that pairs the nRF9160
SiP with an NRF52840 Bluetooth
device, multiple sensors, basic
user interface components, a 1400
milliamp-hour (mAh) rechargeable
battery, and a SIM card to allow
out-of-the-box cellular connectivity
(Figure 7).

For custom development, the
Nordic Semiconductor NRF9160-
DK kit serves as an immediate
development platform and
reference for new designs.
Although it does not include
sensors like the THINGY:91, the
NRF9160-DK kit combines an
nRF9160 SiP with an NRF52840
Bluetooth device and includes
a SIM card along with multiple
connectors including a SEGGER
J-Link debugger interface (Figure
8).

For software development of an
asset tracking application, Nordic
includes a complete nRF9160 asset
tracking application with its nRF
Connect software development kit
(SDK). The SDK combines Nordic’s
nrfxlib software library for its SoCs,
a Nordic fork of the Zephyr Project
real-time operating system (RTOS)
for resource constrained devices,
and a Nordic fork of the MCUboot
project secure bootloader.

The THINGY:91 and NRF9160-DK
kits come preloaded with the asset
tracking application designed to
connect with Nordic’s own nRF
Cloud IoT platform. Using the
preconfigured settings with either
kit, developers can immediately

Figure 7: The Nordic
Semiconductor NRF6943
THINGY:91 cellular IoT
development kit provides a
complete platform for rapidly
prototyping sensor-based
applications with both cellular
and Bluetooth connectivity.
Image source: Nordic
Semiconductor

begin evaluating cellular-based
asset tracking and prototyping their
own applications.

Along with the preloaded firmware,
Nordic provides complete source
code for the asset tracking
application. By examining this
code, developers can gain a deeper
understanding of the NRF9160
SiP’s capabilities, and its use in
supporting GPS localization and

LTE-M/NB-IoT connectivity in an
asset tracking application.

The main routine in this sample
software illustrates basic design
patterns for implementing a
custom asset tracking application.
When started, the main routine
invokes a series of initialization
routines. Among those routines,

Figure 6: Using the Nordic
Semiconductor nRF9160

SiP, developers need few
additional components to

implement the hardware design
for a complete cellular-based

asset tracker or other IoT device.
Image source: Nordic

Semiconductor

https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF9160-DK/NRF9160-DK-ND/9740721
https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF9160-DK/NRF9160-DK-ND/9740721
https://github.com/nrfconnect/sdk-nrf/tree/master/applications/asset_tracker
https://github.com/nrfconnect/sdk-nrf/tree/master/applications/asset_tracker
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/index.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/nrfxlib.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/zephyr.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/mcuboot.html
https://nrfcloud.com/
https://nrfcloud.com/

16

one initialization routine configures
the modem and establishes the
LTE connection by sending a series
of attention (AT) strings to define
connection parameters and invoke
the modem’s built-in functionality
to connect to the carrier network.
Another initialization routine,
work_init, initializes a set of Zephyr
RTOS work queues including those
for sensor, GPS, and development
board buttons (Listing 1).

During this initialization phase, the
functions associated with each
work queue initialization invocation
perform their own specific
initialization tasks, including
those required to perform any
required updates. For example, the

sensors_start_work_fn function
called by work_init sets up a polling
mechanism that can periodically
invoke a function, env_data_send,
that sends sensor data to the Cloud
(Listing 2).

When running the asset
tracker sample application
on the Nordic Semiconductor
NRF6943 THINGY:91 cellular IoT
development kit, the application
sends actual data from the
THINGY:91’s onboard sensors.
When running on the Nordic
Semiconductor NRF9160-
DK development kit, it sends
simulated data using a sensor
simulator routine included in
the SDK. Developers can easily

extend this software package to
implement their own asset tracking
applications or use its code
examples to implement their own
application architecture.

Conclusion

Using conventional
methods, the ability to
track valuable packages
or locate high value
assets across agricultural

or smart city environments
has been limited to wireless
technologies such as RFID tags,
Bluetooth, and Wi-Fi. Designers
need greater range and more
accurate location information over
longer periods of time. Low-power
LTE cellular standards like LTE-M
or NB-IoT combined with GPS
can meet these requirements, but
implementation can be challenging
due to the difficulty and nuances of
RF design.

As shown, a Nordic Semiconductor
SiP provides a near drop-in solution
for long-range, low power asset
tracking. Using this pre-certified
SiP and its development kits,
developers can quickly evaluate
cellular connectivity, prototype
cellular-based GPS enabled asset
tracking applications, and build
custom asset tracking devices that
take full advantage of the extended
range and low power requirements
of LTE-M and NB-IoT cellular
connectivity.

Use a cellular and GPS SiP to implement asset tracking for agriculture and smart cities

Figure 8: The Nordic Semiconductor NRF9160-DK kit offers a comprehensive
development platform for implementation of custom cellular-based applications
for asset tracking and other IoT solutions. Image source: Nordic Semiconductor

17
we get technical

static void work_init(void)

{

 k_work_init(&sensors_start_work, sensors_start_
work_fn);

 k_work_init(&send_gps_data_work, send_gps_
data_work_fn);

 k_work_init(&send_button_data_work, send_
button_data_work_fn);

 k_work_init(&send_modem_at_cmd_work, send_
modem_at_cmd_work_fn);

 k_delayed_work_init(&send_agps_request_work,
send_agps_request);

 k_delayed_work_init(&long_press_button_work,
long_press_handler);

 k_delayed_work_init(&Cloud_reboot_work, Cloud_
reboot_handler);

 k_delayed_work_init(&cycle_Cloud_connection_
work,

 cycle_Cloud_connection);

 k_delayed_work_init(&device_config_work, device_
config_send);

 k_delayed_work_init(&Cloud_connect_work, Cloud_
connect_work_fn);

 k_work_init(&device_status_work, device_status_
send);

 k_work_init(&motion_data_send_work, motion_
data_send);

 k_work_init(&no_sim_go_offline_work, no_sim_go_
offline);

#if CONFIG_MODEM_INFO

 k_delayed_work_init(&rsrp_work, modem_rsrp_
data_send);

#endif /* CONFIG_MODEM_INFO */

}

Listing 1: The Nordic asset tracker sample application builds
on Zephyr RTOS utilities for queue management to create a
series of queues with associated callback routines for handling
various tasks such as sensor data acquisition and transmission
to the Cloud. Code source: Nordic Semiconductor

static void env_data_send(void)

{

[code deleted]

 if (env_sensors_get_temperature(&env_data) == 0) {

 if (cloud_is_send_allowed(CLOUD_CHANNEL_
TEMP, env_data.value) &&

 cloud_encode_env_sensors_data(&env_data,
&msg) == 0) {

 err = cloud_send(cloud_backend, &msg);

 cloud_release_data(&msg);

 if (err) {

 goto error;

 }

 }

 }

 if (env_sensors_get_humidity(&env_data) == 0) {

 if (cloud_is_send_allowed(CLOUD_CHANNEL_
HUMID,

 env_data.value) &&

 cloud_encode_env_sensors_data(&env_data,
&msg) == 0) {

 err = cloud_send(cloud_backend, &msg);

 cloud_release_data(&msg);

 if (err) {

 goto error;

 }

 }

 }

[code deleted]

Listing 2: The Nordic asset tracker sample application
demonstrates the basic design pattern for transmitting data
including sensor data as shown in this code snippet.
Code source: Nordic Semiconductor

18

How to select and use
the right ESP32 Wi-Fi/
Bluetooth module

Written by:
Jacob Beningo
Contributing Author at DigiKey

19
we get technical

Figure 1. The ESP32-
WROOM-32D module
runs at speeds up to
240 MHz and contains
8 Mbytes of onboard
SPI flash. Credit:
Espressif Systems

As the industrial automation
accelerates, engineers on the
factory floor are working to
connect systems to an IoT that
has in many ways left older factory
floors behind. However, for both
new and legacy systems, wireless
connectivity to the IoT using Wi-
Fi or Bluetooth has been made
relatively simple using ESP32
modules and kits.

Created and developed by Espressif
Systems, ESP32 – a series of low-
cost, low-power system-on-a-chip
microcontrollers with integrated Wi-
Fi and dual-mode Bluetooth – is a
breakthrough for automation
engineers who don’t want to
get caught up in the nuances
of radio frequency (RF) and

wireless design. As a low-cost
Wi-Fi/Bluetooth combo radio, it
has gained popularity not just
among hobbyists but also among
IoT developers. Its low energy
consumption, multiple open-source
development environments, and
libraries makes it perfectly suited
for developers of all sorts.

However, ESP32 comes in so many
different modules and development
boards that it can be difficult to
select the right one.

This article introduces ESP32
solutions and shows how
developers can identify the right
module and development board to
start connecting their application to
the IoT.

The ESP32 module

The ESP32 module is an all-in-one,
integrated and certified Wi-Fi/
Bluetooth solution that provides
not just the wireless radio but
also an on-board processor with
interfaces to connect with various

Figure 2. The ESP32-WROOM-
32U is pin compatible
with the WROOM-32D but
replaces the latter’s on-
board trace antenna with
an IPEX connector for an
external antenna, allowing for
optimized RF characteristics.
Credit: Espressif Systems

https://www.digikey.com/en/supplier-centers/espressif-systems
https://www.digikey.com/en/supplier-centers/espressif-systems

20

peripherals. The processor actually
has two processing cores whose
operating frequencies can be
independently controlled between
80 megahertz (MHz) and 240 MHz.
The processor’s peripherals make
it easy to connect to a range of
external interfaces such as:

 ■ SPI
 ■ I2C
 ■ UART
 ■ I2S
 ■ Ethernet
 ■ SD Cards
 ■ Capacitive touch

There are several different ESP32
modules that a developer can
select based on their application
needs. The first and most popular
ESP32 module is the ESP32-
WROOM-32D, which runs at up to
240 MHz (Figure 1). The module
includes a PC board trace antenna,
which simplifies implementation.
It also avoids having to add the

additional hardware and layout
complexity associated with an IPEX
connected antenna. However, if the
IPEX connector option is selected,
there are plenty of good antenna
options, such as Inventek Systems’
W24P-U.

The module contains 4
megabytes (Mbytes) of
flash and has 38 pins that
are arranged to minimize
the module’s size,
making it nearly square.
In fact, the WROOM-
32D is completely pin
compatible with the ESP-
WROOM-32U (Figure
2). The WROOM-32U
replaces the onboard
PC board trace antenna
with an IPEX connector,
based on the Hirose
U.FL design. In doing so,
the WROOM-32U saves
board space and allows
developers to connect

an external antenna that they can
arrange within their product for
optimal RF characteristics.

An interesting point about the
WROOM-32D modules is that they
also come in various flash memory
sizes. The modules come in
additional memory support variants
like the ESP32-WROOM-32D with 8
Mbytes and the ESP-WROOM-32D
with 16 Mbytes.

Selecting an ESP32
development board for
industrial control

The ESP32 modules are a great
choice when designing a board
that will be used in production or
where they will be put on a board
that will be used in ‘high’ volume.

Figure 3. TThe ESP32-DEVKITC-32D-F development board includes breakout
headers for connecting to any of the WROOM-32D pins and can be powered through
USB for development purposes. Credit: Espressif Systems

Figure 4. The Adafruit Airlift ESP32 Shield allows
designers to prototype their design or build one-off
circuits that can be used in industrial automation
applications. The Airlift includes prototyping space
that can be used for dedicated circuitry.
Credit: Espressif Systems

Real-Time Operating Systems (RTOS) and their applications

https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32D/9381732
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32D/9381732
https://www.digikey.com/en/supplier-centers/inventek-systems
https://www.digikey.com/en/products/detail/inventek-systems/W24P-U/1475-1019-ND/4488778
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32U/1904-1026-1-ND/9381735
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32U/1904-1026-1-ND/9381735
https://www.digikey.com/en/supplier-centers/hirose
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32D-8MB/1904-1024-1-ND/9381733
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32D-16MB/1904-1025-1-ND/9381734https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32D-16MB/1904-1025-1-ND/9381734

21
we get technicalwe get technical

For development of low-volume
fixtures on the manufacturing
floor, developers can use an
ESP32 development board.
These boards range from very
basic ‘getting started’ boards to
sophisticated boards that include
secondary processors and LCDs.
There are some that are also well
suited for industrial automation
applications, assuming simplicity of
development is a key requirement.

For instance, there’s the ESP32-
DEVKITC-32D-F (Figure 3). This
is a simple breakout board for the
WROOM-32D that has all the power
conditioning and programming
circuits a designer or developer
needs to get started. The board is
powered either through an on-
board USB micro connector or
through the V-IN breakout header.
Jumpers or wires can then be used
to connect various components to
the WROOM-32D.

Another example is the Adafruit
Industries Airlift ESP32 Shield.
This not only includes the WROOM-
32D, but also has additional
prototyping space (Figure 4). This
prototyping space can be used to
add connections to other shields in
addition to adding custom circuitry.
A developer could use this area to
build input and output circuits for
low voltage industrial automation
applications. There is also an
onboard SD card connector that
makes developing a data logging
application that much easier.

There may be some industrial

Figure 5. The Digilent ESP32 PMOD board
provides the ESP32 module in an easy to
connect expansion format for use with

other processors and development
boards. Credit: Espressif Systems

automation applications where
a development board with an
additional processor is being
used and the ESP32 will just be
providing connectivity rather than
handling the whole application
load. In these applications, the
development board or product may
have expansion PMOD connectors
onboard.

Rather than custom designing
a PMOD board for the ESP32,
developers can leverage the
Digilent ESP32 PMOD breakout
board (Figure 5).

The ESP32 PMOD provides a PMOD
standard connector along with the
following:

 ■ A power LED indicator
 ■ An on-board user button

 ■ Four pin I/O expansion
 ■ Jumpers for boot configuration

The Espressif Systems ESP-
WROVER-KIT provides a full
ESP32 development solution
with everything designers need
to develop an ESP32-based
application (Figure 6). For example,
the WROVER includes an FT2232HL
USB to serial converter from FTDI
which makes it easy to program the
ESP32 module without the need for
custom programming tools. The
board also includes an onboard 3.2
inch LCD, a microSD connector, an
RGB LED and a camera interface.
The development board also as all
the I/O lined up and made easily
accessible through pin headers.

https://www.digikey.com/en/products/detail/espressif-systems/ESP32-DEVKITC-32D-F/1965-1003-ND/9693290
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-DEVKITC-32D-F/1965-1003-ND/9693290
https://www.digikey.com/en/supplier-centers/adafruit
https://www.digikey.com/en/supplier-centers/adafruit
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4285/1528-4285-ND/10263861
https://www.digikey.com/en/supplier-centers/digilent
https://www.digikey.com/en/products/detail/digilent-inc/410-377/1286-1193-ND/8599302
https://www.digikey.com/en/products/detail/espressif-systems/ESP-WROVER-KIT/1904-1013-ND/8544301
https://www.digikey.com/en/products/detail/espressif-systems/ESP-WROVER-KIT/1904-1013-ND/8544301
https://www.digikey.com/en/products/detail/ftdi-future-technology-devices-international-ltd/FT2232HL-REEL/768-1024-1-ND/1986057
https://www.digikey.com/en/supplier-centers/future-technology-devices-intl

22

Once a designer has decided which
module and development board
best fit their application, they need
to spend some time looking at the
development environment for the
ESP32 that best fits their needs.

Selecting an ESP32
development environment

The ESP32 has become so popular

that there are several different
development environments to
choose from to develop and
program the device. The most
popular development tools include:

 ■ The Espressif IoT Development
Framework (IDF)

 ■ Arduino IDE
 ■ MicroPython

The first environment, the Espressif
IDF, is a development toolchain for

experienced embedded software
developers. The toolchain includes
several useful pieces such as an
IDE to develop the application, a
compiler, libraries, and examples.
The IDF uses FreeRTOS as the base
real-time operating system (RTOS)
along with the lwIP TCP/IP stack
and TLS 1.2 for Wi-Fi.

For developers who have minimal
programming experience, the
popular Arduino IDE can also be
used to develop an application
and deploy it to the ESP32. While
the Arduino IDE is a bit slower
and clunkier than a professional
development environment, it offers
a lot of examples and support
for the ESP32, which can make
development for a newbie much
easier.

ESP32 – a series of low-cost, low-power
system-on-a-chip microcontrollers with
integrated Wi-Fi and dual-mode Bluetooth – is
a breakthrough for automation engineers who
don’t want to get caught up in the nuances of
radio frequency (RF) and wireless design.

Real-Time Operating Systems (RTOS) and their applications

E2PROM 32.768KHz
crystal

RGB
LED

MicroSD

Camera

LCD:
3.2 inch

I/O
expand

12MHz

D+/D-

USB_5V

UART

JTAG

+3.3V

Boot

EN
/RST

+3.3V

ChannelA

ChannelB

JTAG

UART

FT2232HL ESP32_ModuleUSB
Connector

LDO:
+5V->+3.3VEXT_5V

Key1 Key2

Figure 6. The Espressif ESP-WROVER-KIT board provides industrial automation
developers with an ESP32 module that has access to an RGB LED, microSD slot,
camera, an LCD, and easily accessible I/O expansion.
Credit: Espressif Systems

https://www.digikey.com/en/supplier-centers/arduino

23
we get technical

Finally, for developers who are
interested in developing their
application in Python, the ESP32
is supported by the open source
MicroPython kernel. Developers
can load MicroPython onto the
ESP32 and then develop Python
scripts for their application. This
can make it very easy to update
the application on-the-fly in an
industrial setting and remove layers
of required expertise that normally
come with embedded development.

Tips and tricks for working
with ESP32

Getting started with ESP32 is not
difficult, and a search of the web
will provide detailed descriptions of
how to set up the various software
environments. That said, there
are many nuances and decisions
required of developers working with
ESP32 for the first time. Here are
a few ‘tips and tricks’ for getting
started:

 ■ Carefully identify and configure
a module’s boot pins – MTDI,
GPIO0, GPIO2, MTDO and GPIO5
– to load an application from the
correct memory source (internal
flash, QSPI, Download, Enable/
Disable debug messages)

 ■ Set the serial output baud rate
to the same baud rate as the
ESP32 boot firmware baud rate.
This will allow monitoring of the
ESP32 boot messages, and the
application debug messages,
without reconfiguring the baud
rate

 ■ Users that don’t have embedded
programming experience should
‘flash’ MicroPython onto the
ESP32 so that the application
code can be written in the
easy to learn Python scripting
language

 ■ For the application, search the
Internet for ESP32 examples and
libraries to accelerate application
development and integration
(there are a lot of great examples
already available)

 ■ In the design, make sure that the
boot strapping pins are able to
be used to boot into the update
mode. This will make it very easy
to update firmware in the field

 ■ Developers that follow these ‘tips
and tricks’ will find that they can
save quite a bit of time and grief
when working with ESP32 for the
first time.

Conclusion

As shown, ESP32 has several
different modules and development
boards that developers can
leverage to begin designing their
industrial IoT application. The
advantage of using ESP32 for
this purpose is that it simplifies
development by removing the need
to understand RF circuitry and to
certify the wireless receiver. ESP32
is also widely supported, not just by
the module manufacturer but also
within professional and hobbyist
circles. Developers who are not
familiar with embedded software
can easily use the Arduino IDE or
program their wireless application

using MicroPython.

All told, ESP32 is an excellent
choice for connecting industrial
automation equipment quickly and
efficiently.

24

Contributed By:
Stephan Evanczuk,
Contributing Author at Digikey

IoT security fundamentals:
connecting securely to IoT
Cloud services

Internet of Things (IoT) security
depends on multiple layers of
protection extending from the
IoT device’s hardware foundation
through its execution environment.
Threats remain for any connected
device, however, and typical IoT
application requirements for Cloud
connectivity can leave both IoT
device and Cloud services open
to new attacks. To mitigate these
threats, IoT Cloud providers use
specific security protocols and
policies which, if misused, can
leave IoT applications vulnerable.

Using preconfigured development
boards, developers can quickly
gain experience with the security
methods used by leading IoT
Cloud services to authenticate
connections and authorize use of
IoT devices and Cloud resources.

This article describes the
connection requirements of two
leading Cloud services, Amazon
Web Services (AWS) and Microsoft
Azure, and shows how developers
can use development kits and
associated software from a variety
of vendors to quickly connect with
these services.

24

25
we get technical

The role of IoT portals in
Cloud services

When an IoT device connects to a
resource such as a Cloud service
or remote host, it potentially
exposes itself – and by extension
the entire IoT network – to threats
masquerading as legitimate
services or servers. Conversely, the
Cloud service itself similarly faces
the threat of attacks from hackers
mimicking IoT device transactions
in an attempt to penetrate Cloud
defenses. To help ensure protection

for both IoT devices and Cloud
resources, Cloud services require
the use of specific security
protocols for mutual authentication
of identity for sign in and
subsequent authorization to ensure
permitted usage of services. These
protocols are typically included
in a set of services that provide a
secure portal between IoT devices
and Cloud resources.

As with other available IoT Cloud
service platforms, AWS, and Azure
each provide a specific entry portal
that IoT devices need to use to

interact with each provider’s full set
of Cloud resources such as virtual
machines (VMs) and software-
as-a-service (SaaS) offerings.
Using a functionally similar set
of mechanisms and capabilities,
Azure IoT Hub and AWS IoT provide
this portal for their respective
enterprise Cloud offerings.

At a minimum, these and other IoT
portals use specific authentication
protocols implemented through
each provider’s software
development kit (SDK) to create
a secure connection. For AWS,

Figure 1. As with other Cloud providers, AWS provides
developers with a set of specialized services
designed to enhance the security and effectiveness
of transactions between IoT devices and enterprise
Cloud services. Credit: Amazon Web ServicesAWS IoT

26

IoT devices connect using mutual
authentication with a device
gateway. The device gateway
connects the IoT device with
other IoT support services, using
information held in a device
registry to store a unique device
identifier, security credentials and
other metadata needed to manage
access to AWS services (Figure 1).
In Azure, the identity registry serves
a similar function.

AWS IoT and Azure IoT each
provide a service that maintains
state information in a virtual device
associated with each physical IoT
device. In AWS IoT, device shadows
provide this capability for AWS IoT,
while device twins provide similar
capabilities for Azure IoT.

This notion of a security portal
extends to IoT Edge services such
as AWS Greengrass or Azure IoT
Edge. These Edge service offerings
bring some Cloud services and
capabilities down to the local
network, where Edge systems
are placed physically close to IoT
devices and systems in large-scale
deployments. Developers can use
a service such as Azure IoT Edge

Telemetry

Azure IoT edge device

Insight
Insights and

module healthAction
IoT Hub

Azure IoT Edge runtime

IoT security fundamentals: connecting securely to IoT Cloud services

Figure 2. To support Edge computing, Cloud service providers offer specialized
services such as Microsoft Azure IoT Edge, which brings some Azure IoT Cloud
services closer to the physical devices associated with the IoT application.
Credit: Microsoft Azure

to implement application business
logic or provide other functional
capabilities needed to reduce
latency or provide services to local
operators, such as in industrial
automation (Figure 2).

Dealing with requirements
for IoT portal connectivity

Whether connecting through an
Edge system or directly with the
provider’s IoT service, IoT devices
typically need to satisfy a series of
requirements to connect through
the provider’s IoT portal and use
the provider’s Cloud services.
Although the details differ, IoT
devices need to provide at a
minimum, some item such as a
private key, X.509 certificate, or
other security token. The key,
certificate, or token provides the
IoT portal with attestation or proof
of the IoT device’s identity during
the authentication phase of the
device-Cloud connection sequence.
In addition, IoT Cloud services
typically require a specification of

the policies used to define access
rights for interactions between IoT
devices and Cloud services.

As with other enterprise computing
requirements, attestation
information for authentication
and policy information for access
management need to be provided
using specific formats and
procedures specified by leading IoT
Cloud services like AWS IoT and
Azure IoT. These services support
certificate-based authentication at
a minimum, but also support use
of other forms of attestation. For
example, developers can use token-
based authentication methods
based on a JSON Web Token (JWT)
for AWS IoT, or a shared access
signature (SAS) token for Azure IoT.

As mentioned earlier, these
services use registries to hold
metadata for each IoT device.
Along with security and other
information, these registries store
the access rights policies that
need to be defined to connect an
IoT device. Although specified in

27
we get technical

Cloud-ready development
kits

Although Cloud providers offer
detailed specifications of those
formats and procedures, the
providers’ support forums are
typically filled with questions
from developers tripped up by
some small but vital detail that
prevents authentication and access
management. Perhaps even
worse, from a security standpoint,
unintended misuse of attestation
or incomplete definition of access
policies can leave IoT devices,
networks, and applications open
to attack. The availability of off-
the-shelf development boards and
accompanying software packages
allows developers to quickly
navigate through these connection
procedures, using vendor-provided

examples to rapidly connect to IoT
Clouds. For example, Espressif
Systems’ ESP32-Azure IoT Kit
or Seeed Technology’s AZ3166
IoT Developer Kit include Azure-
certified boards designed to
connect easily with the Microsoft
Cloud.

Microsoft provides complete step-
by-step demonstrations, including
authentication and access
credentials for the supported
development kits. With the AZ3166
board, for example, developers
press buttons on the board to
initiate connection with their local
Wi-Fi network. Once connected,
they can use the Azure IoT Device
Workbench contained within the
Azure IoT Tools extension pack
for Microsoft Visual Studio Code
to develop, debug, and interact
with the Azure IoT Hub. Using

Figure 3. Sample code and credentials provided in the Microsoft Azure
IoT Device Workbench help developers complete provisioning for
connecting the Seeed Technology AZ3166 IoT Developer Kit to Azure IoT
Hub. Credit: Microsoft Azure

Listing 1: Developers use a JSON format
to describe AWS IoT access rights
policies for their IoT devices.
Credit: AWS

{

 “Version”: “2012-10-17”,

 “Statement”: [

 {

 “Effect”: “Allow”,

 “Action”:[“iot:Publish”],

 “Resource”: [“arn:aws:iot:us-
east-1:123456789012:topic/${iot:
Connection.Thing.ThingName}”]

 },

 {

 “Effect”: “Allow”,

 “Action”: [“iot:Connect”],

 “Resource”: [“arn:aws:iot:us-
east-1:123456789012:client/${iot:
Connection.Thing.ThingName}”]

 }

]

}

different ways for different Cloud
services, these policy definitions
describe access rights for different
communications channels and
entities. For example, a simple AWS
IoT access right policy would use a
JSON format to indicate that an IoT
device with a particular ‘thing’ name
in the AWS IoT device registry could
connect and publish messages
only on a channel with the same
associated thing name (Listing 1).

https://www.digikey.com/en/supplier-centers/espressif-systems
https://www.digikey.com/en/supplier-centers/espressif-systems
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-AZURE-IOT-KIT/10259357?s=N4IgTCBcDaIKIGUAKBmMBaAggLQKoCU50BJAeQBV0BpY8kAXQF8g
https://www.digikey.com/en/supplier-centers/seeed
https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/102990944/9991614?s=N4IgTCBcDaIIwAYwE5kOQFgyAugXyA
https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/102990944/9991614?s=N4IgTCBcDaIIwAYwE5kOQFgyAugXyA
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-tools
https://code.visualstudio.com/

28

this toolset and its sample code
packages, developers create an
object for the IoT device in Azure
IoT Hub and use a provided file to
provision the associated identity
registry with the credentials and
other metadata required to connect
the IoT board to Azure IoT Hub
(Figure 3).

The Azure IoT Device Workbench
provides additional support
software and metadata that lets
developers quickly load the AZ3166
board with sample code and
begin transmitting measurements
from the board’s temperature and
humidity sensor to Azure IoT Hub.

The steps involved in creating a
representation for the physical
IoT device in the IoT Cloud and
for provisioning the associated
registry are needed just to connect
devices with the IoT Cloud. To
take advantage of Cloud services,
however, the Azure IoT Hub needs
an access rights policy. To monitor
the device-to-Cloud messages

coming from the AZ3166 sensor,
developers can simply use the
Azure shared access policies
screen to select a prebuilt policy
designed to quickly enable the
required access rights (Figure 4).

When working with AWS IoT,
developers can turn to development
kits such as Microchip
Technology’s AT88CKECC-AWS-
XSTK-B Zero Touch Provisioning
kit and accompanying software to
quickly evaluate Cloud connectivity.
This updated version of an earlier
Microchip Zero Touch Provisioning
kit comes preloaded with
authentication credentials. Using
additional scripts provided with the
kit, developers can rapidly connect
the board to AWS IoT without
dealing with private keys and
certificates (see, ‘Take the Zero-
Touch Approach to Securely Lock
Down an IoT Device’).

Other development kits, including
Renesas’ RTK5RX65N0S01000BE
RX65N Cloud Kit and
Infineon Technologies’
KITXMC48IOTAWSWIFITOBO1 AWS
IoT kit, extend support for AWS
IoT connectivity with support for
rapid development of applications
based on Amazon FreeRTOS. AWS
provides detailed directions for
registering the boards, creating
authentication credentials, and
loading provided JSON policies
needed to connect to AWS IoT and
use AWS services.

Simplifying provisioning
for large-scale IoT
deployments

Development kits such as
those described above serve as
effective platforms both for rapid
prototyping of IoT applications
and for exploring IoT Cloud

IoT security fundamentals: connecting securely to IoT Cloud services

Figure 4. Developers can use prebuilt policies to easily authorize use of Azure Cloud
services with sensor data from the Seeed Technology AZ3166 IoT Developer Kit.
Credit: Microsoft Azure

https://www.digikey.com/en/supplier-centers/microchip-technology
https://www.digikey.com/en/supplier-centers/microchip-technology
https://www.digikey.com/en/products/detail/microchip-technology/AT88CKECC-AWS-XSTK-B/7666680?s=N4IgTCBcDaIIIBUAcSDCBpAoq1BaOA6gMq4AaRC6uAQiALoC%2BQA
https://www.digikey.com/en/products/detail/microchip-technology/AT88CKECC-AWS-XSTK-B/7666680?s=N4IgTCBcDaIIIBUAcSDCBpAoq1BaOA6gMq4AaRC6uAQiALoC%2BQA
https://www.digikey.com/en/supplier-centers/renesas-electronics-america
https://www.digikey.com/en/products/detail/renesas-electronics-america-inc/RTK5RX65N0S01000BE/10288649?s=N4IgTCBcDaIEoBUDSBWOANAbCgcgBgGU8BGPMgIQFEQBdAXyA
https://www.digikey.com/en/supplier-centers/infineon-technologies
https://www.digikey.com/en/products/detail/infineon-technologies/KITXMC48IOTAWSWIFITOBO1/9816150?s=N4IgTCBcDaINIEkAqANAsgYQCwA4EHkkBBAdQGUSEAxZfAIXwEYQBdAXyA

29
we get technical

service connection requirements.
In practice, however, developers
will typically need to turn to more
advanced approaches designed to
simplify provisioning of IoT devices
in real-world applications. Both
Azure IoT and AWS IoT support a
wide variety of methods that allow
more automated provisioning of
individual devices or large numbers
of IoT devices in a large-scale
deployment.

With AWS IoT, for example,
developers can use a bootstrap
method for certificate provisioning.
Here, the smart product ships with
a bootstrap certificate associated
with the minimal access rights
needed to request and access a
new certificate (Figure 5).

Using the bootstrap certificate, the
device connects to the Cloud (‘1’
in Figure 5), requests (‘2’) a new
certificate, receives (‘3’) the URL
of the certificate generated by an
AWS serverless Lambda function,
and retrieves (‘4’) that certificate
from an AWS Simple Storage
Services (S3) bucket. Using that
new certificate, the device then logs
back into AWS IoT (‘5’) to proceed
with normal operations.

AWS offers other Cloud services
that support dynamic provisioning
of authentication tokens using
execution resources like AWS
Lambda functions. For example,
an automotive application might
rely on a series of ephemeral
connections where use of a
token is both more practical and
more secure. Here, after an AWS

Figure 5. AWS IoT
supports a method to
bootstrap certificate
provisioning in IoT
devices. Credit:
DigiKey, from Amazon
Web Services

Figure 6. Leading Cloud service providers
support other forms of attestation for
authentication such as this process for
dynamic generation of security tokens by AWS
Security Token Service (STS). Credit: Amazon
Web Services

module for IoT authentication and
authorisation approves the request
for a token, the AWS Security Token
Service (STS) generates a token for
delivery to the vehicle’s systems.
Using that token, those systems

can access AWS services subject
to validation by the AWS Identity
and Access Management (IAM)
service (Figure 6).

AWS provides a similar capability

30

for dynamic assignment of access
rights. Here, other AWS Lambda
functions would assign a set of
policies associated with a valid
token (Figure 7).

Other IoT Cloud services allow
developers to more efficiently deal
with provisioning in large-scale
deployments. For example, AWS
IoT provides fleet provisioning
capabilities, including support for a
larger scale deployment of the kind
of bootstrap method described
earlier. Azure IoT’s Device
Provisioning Service provides a
group enrolment capability that
supports provisioning of large
numbers of IoT devices that share
the same X.509 certificate or SAS
token.

Figure 7: Developers can use Cloud
services to implement dynamic
assignment of access rights, which
is particularly useful for applications
with ephemeral connections or
short-lived operations. Credit:
Amazon Web Services

Figure 8. As with other leading Cloud providers, AWS describes
the responsibilities that it shares with Cloud users to protect the
Cloud infrastructure on one hand and customer applications on
the other. Credit: Amazon Web Services

IoT security fundamentals: connecting securely to IoT Cloud services

31
we get technical

Shared responsibility for
security

IoT Cloud providers provide a
number of effective methods for
enhancing end-to-end security for
IoT applications. Nevertheless,
IoT developers cannot expect that
those methods can bear the full
weight of security requirements
for their particular IoT application.
In fact, Cloud service providers
carefully outline their specific
role and responsibilities in IoT
application security with specific
models such as AWS’ shared
responsibility model (Figure 8).

AWS and Microsoft Azure each
provide shared responsibilities
documents that describe and
explain the provider’s own role and
that of the customer in securing
resources, data, and applications.
In its documentation, Microsoft
also offers an overview of some
of the relationships between
shared security and compliance
requirements. Ultimately, Cloud
providers retain responsibility for
the security of the Cloud, while
customers remain responsible for
applications, data, and resources
used in the Cloud.

Conclusion

IoT applications depend on
layers of security built up from
hardware-based mechanisms
for cryptography and secure
key storage. As with any
connected product, security

threats can arrive in all manner
of interactions when IoT devices
connect with Cloud services.
To protect themselves and their
customers, IoT Cloud providers
dictate specific requirements for
authentication and access rights
management. Although providers
offer detailed documentation on
those requirements and associated
specifications, developers can

find that their efforts to implement
secure connectivity sometimes
leave resources exposed,
or conversely, inaccessible.
Using development boards and
associated software, developers
can quickly connect to Cloud
services and rapidly prototype
IoT applications with end-to-end
security.

32

Introduction

Modern computing and
networking history is rich with
projects and innovations that
laid the foundation for the
information age, from ARPANET
to the World Wide Web. Among
these landmark projects, the
BCC-500 stands out as a near-
forgotten computer that was
a key to developing the first
wireless packet-switched
computer network with the
ALOHA system. One of a kind
and built by hand, the system
was the first wireless access

ARPANET node, starting in 1974
until its decommissioning in
1980.

This is the story of the BCC-500.

1960s - the GENIE, time
share and The Cold War

The story of the BCC-500
begins in the 1960s with Project
GENIE at the University of
California, Berkeley, a system
that revolutionized time-share
computing and significantly
influenced the development of
computer networks.

In 1963, J.C.R. Licklider, a
director in ARPA (Advanced
Research Projects
Administration), started funding
the electrical engineering
department at the University
of California, Berkeley under
a program called ‘Project
GENIE.’ Graduate student Mel
Pirtle started the program by
developing a way for multiple
people to use a computer
simultaneously. The issue was
that early computers could only
have one user at a time. A user
would need to submit a batch of
requests and wait for their turn

Retro Electro: The ALOHA
System: Task II

Written by: David Ray,
Cyber City Circuits

retroelectro

Figure 1: Image of
the BCC-500 from
an unknown time.
Image source:
Lars Brinkoff and
gunkie.org

http://gunkie.org

33
we get technical

for their work to be processed
and returned.

The SDS-930 was a computer
designed by Scientific Data
Systems in Santa Monica,
California. The technical manual
includes this description: ‘The
930 Computer is a general-
purpose, solid-state, digital
computer designed for scientific
and engineering computation
and real-time applications.’
Weighing up to 2,750 pounds
and commanding a nearly 200
square-foot footprint, it was a
marvel of human engineering
while being a monster of a
machine. When it arrived at
Berkeley in September 1964, the
machine was used to develop
the first successful time-sharing
system.

A time-sharing system is a
method that allows many users
to share access to a computer
system at the same time. It
works by rapidly switching
between users, assigning each
a brief time slot to interact with
the computer. This means the
system can take instructions
from one user, execute them
for a few milliseconds, and
then move on to the next user,
repeating this process so quickly
that it seems like all users are
working simultaneously. This
efficient use of computing
resources makes it possible for
multiple people to use the same
computer without significant
delays.

In a demonstration, Pirtle
typed instructions and queries

continuously for forty minutes,
but the system only registered

fifty-six seconds of
computer time with
dozens of other
concurrent users.
While this sounds
trivial today, this
was the real cutting-
edge technology.

During the Cold War,
developing time-
sharing systems like
Project GENIE had
significant strategic
importance. It
allowed military and
research institutions
to maximize their

computing resources, enabling
rapid data processing and
real-time simulations crucial
for defense research and
development. This technological
edge provided the United States
with enhanced capabilities in
various fields, from cryptography
to missile guidance, thus
contributing to the critical
technological superiority during
the Cold War era.

1968 - Berkeley Computer
Corporation

Once completed, the changes
made to the SDS-930 to create
the powerful time-share
system found their way back
to Scientific Data Systems,
which implemented them in
an upgraded model called the
‘SDS-940’. First shipping in April
1966, this machine became the
company’s most successful
computer, earning $40 million in
sales. This caught the attention
of Xerox, which purchased the
company in May 1969. Xerox
continued to sell this system
with the model number ‘XDS-
940’.

The VP for Technology Strategy,
Robert Spinrad, is quoted as
saying, “Project Genie was the
earliest useful realization of
timesharing on a minicomputer.
Their computer differed from
earlier systems in that those
were built on large, mainframe

Figure 2: SDS-930 Front and Rear View
Image source: SDS-930 Technical Manual

34

computers. This system was
attractive to SDS (Scientific
Data Systems) because they
made minicomputers and had
been thinking of getting into the
timesharing business.”

When Project GENIE formally
ended in 1968, the team split up
in various ways mainly staying
within academia and research,
with some going to companies
like Xerox, and a few took the
route of entrepreneurship.

Dr. Melvin Pirtle, Dr. Butler
Lampson, Chuck Thacker,
and Alan Kay wasted little
time and started their own
company, the Berkeley Computer
Corporation (BCC). Building
on the successes of Project
GENIE, BCC was formed with
the goal of designing the BCC-
500, a computer meant to push
the boundaries of time-share
computing even further.

BCC was founded on December
19, 1968, and remained in
business until January 1971.
Its primary purposes were
manufacturing and marketing
large-scale time-sharing
computer systems and related
equipment and offering time-
sharing services on BCC-owned
systems. The original staff
consisted of fourteen senior-
level programmers, eight
senior-level engineers, and
many supporting technicians,
draftsmen, and programmers.

Pirtle, the first Principal
Investigator at Project GENIE,
was the company’s President,
Lampson was the head system
designer, and Chuck Thacker
was the engineering project
leader. An internal document
named ‘Supervisor’s Manual’
is available (and listed in the
Suggested Reading section) that
lists all the personnel with the
company in October 1969.

Some remarks on a large
new time-sharing system

Prior to going out of business,
in what could have been a last-
ditch effort to sell the BCC-500
prototype and stay in business,
Lampson authored a report
titled ‘Some Remarks on a Large
New Time-Sharing System’.
This document is the earliest
comprehensive overview of the
BCC-500.

In this report, he lists BCC’s four
primary characteristics they had
in mind when designing this
system:

 ■ Efficiency, obtained through
specialized hardware

 ■ Reliability, which depends on
redundancy, error-checking,
and good protection
mechanisms

 ■ Modularity in both hardware
and software

 ■ High-level Language
Programming

Here, we find the claim that
the BCC-500 could support
up to five hundred concurrent
time-sharing users. He also
discussed the machine’s unusual
configuration. It consisted of
two central processors, several
small processors, and a rotating
magnetic memory system, which
allowed them to swap 250 users
in and out in one second.

While this sounds like it would
be impressive for the time, he
continues to say:

‘The Model 500 is not an
unusually fast machine when
measured in instructions
per second, nor does it use
extremely fast logic. It is the
specialization of comparatively
modest amounts of hardware
for particular purposes, which
make its overall efficiency high’,
arguing that even though many
of the machine’s specifications
were worse compared to the

retroelectro

Figure 3: Help Wanted Ad
(November 16, 1969)

35
we get technical

competition, it is an application-
specific design, comparable or
better in efficiency.’

The BCC-500 would have
shipped with a working
FORTRAN IV and eBASIC
compiler and an SDS/XDS-940
emulator. Its operating system
was a highly machine-oriented
program with more than
10,000 discrete instructions,
which contained fewer than
one hundred discrete machine
instructions. This would have

made writing software for the
system easier and quicker.

The firmware was designed so
that a user would get between
500ms and 750ms of allocation
every five seconds. The 750ms
limit was there so that the user
wouldn’t notice a wildly different
quality of service outside of
peak usage time.

1970 – financial difficulties

The recession of 1970 struck,

and like many other new small
businesses, BCC was feeling
it. Early on, the company was
able to raise two million dollars
from Data Processing Financial
& General Corporation (DPF&G),
but that would soon come to an
end.

In April, Pirtle obtained a $1M
investment from the University
of California, Berkeley’s
investment portfolio. This
investment was met with the
slightest controversy. Recently,
the University made some poor
decisions and came under
scrutiny for misuse of funds.
At this same time, DPF&G was
in an antitrust lawsuit with
International Business Machines
(IBM).

DPG&G invested money in
developing the BCC-500 to
avoid purchasing more IBM
equipment in the future. When
the lawsuit had settled and the
BCC-500 wasn’t completed
towards the end of 1970, DPF&G

The BCC-500 was designed to get power from
a motor generator so that brown-outs from the
utility company would not affect it. Today, you
would just use a $50 “battery backup” from the
Digikey catalog.

These are the
same effects of
the 1970 recession
that affected Hans
Camenzind and
Signetics in Volume 5
of ‘We Get Technical’.
Check it out.Figure 4: BCC 500 Block Diagram (Some Remarks

on a Large New Time-Sharing System)

https://www.digikey.com/short/3hbwq78d
https://www.digikey.com/short/3hbwq78d
https://emedia.digikey.com/view/877057957/30/

36

from the Office of Aerospace
Research (SRMA) and they
started developing the system.

In 1970, while at a conference
in Washington, DC, the Principal
Investigator of the ALOHA
system, Norman Abramson
and Frank Kuo met with Larry
Roberts and Bob Taylor at
the Pentagon. During this
meeting, they proposed an
easily deployable, resilient, and
repairable wireless system. This,
of course, caught the attention
of many people who saw the
potential of such a system in the
wars of the day.

In June 1971, the central UHF
station of the ALOHA System
had been tested by the first
remote terminal. By the end of
1971, four remote terminals
had been connected to the
University’s central computer
through the ALOHA System.

1971: ARPA grant and
moving from Berkeley

It is unknown how or why ARPA
gained possession of the BCC-
500, but this writer speculates
that the University of California
Berkeley took it from the
Berkeley Computer Corporation
as a return for their very recent
one-million-dollar investment,
then it was given or sold to
ARPA.

In November 1971, ARPA

stopped funding BCC, deciding
to stick with IBM equipment.
With this they lost a contract for
mainframe leasing with DPF&G
along with additional funding.

When the Berkeley Computer
Corporation closed in January
1971, the members split up.
Many of the top talents went on
to Xerox PARC to invent the first
modern computer, the Xerox
Alto, while some others followed
the BCC-500 on its fated
Hawaiian trip.

1968: beginnings of the
ALOHA System at the
University of Hawaii

In the 1960s, the University
of Hawaii consisted of half
a dozen campuses spread
across many islands and
several research institutes with
researchers all around Hawaii,
within a 200-mile radius of
Honolulu. With the increasing
availability of mainframes and

mini-computers, the University
purchased an IBM 360/65 to use
with a time-sharing system, like
many other Universities of the
day.

The central computer would
be on one island, and students
would have to ‘dial in’ to the
system using antiquated inter-
island phone lines that AT&T laid
in the early twentieth century.
The lines were unreliable, and
the age and quality of the cables
limited speeds.

In 1968, members from the
then-new ethernet consortium
were meeting in Honolulu for
a conference, and members
of the University of Hawaii’s
engineering department had the
opportunity to pick the minds
of some prominent figures in
computing history. Soon after,
in September, the University of
Hawaii began researching radio
communications for computer-
to-computer networking. Early
on, they were able to get funding

retroelectro

Figure 5: April 1970 Proposal for The
Aloha System (The Aloha System –
Another Alternative For Computer
Communications)

37
we get technical

machine was being moved. In
February 1972, a team from
Hawaii and previous members of
BCC started to disassemble the
machine to move it to Honolulu.

Some sections could only be
disassembled by cutting cables,
but the final report submitted to
ARPA notes that less than $100
of damage occurred throughout
the move. In 2024 dollars,
this is equal to $767 when
accounting for inflation. The
equipment was crated and flown
to Hawaii on a 707 Jet Freighter.
When the equipment arrived,
it was all intact but far from
operational. According to the
report, they spent a lot of time
deeply examining each piece for
design flaws and inefficiencies.
Several design weaknesses were
identified and rectified. Often,
this required adding wires to the
existing printed circuit boards.
However, in some instances,
completely new boards were
necessary. The revised items
were then thoroughly tested and
installed into newly designed

cabinets that offered improved
cooling.

The rebuild process was
plagued with issues. The air
conditioning would fail often,
and both rotating drum memory
units got sand in them, causing
them to crash. It is Hawaii
after all. Apparently, sand was
such an issue that they turned
that section of the building
into a clean room with positive
air pressure, air filtration and
cleaning systems, etc.

The BCC 500 system first
became operational as a
complete working system
in February 1973. It was
initially only helpful for system
programming due to poor
reliability. Still, by March 1973,
the system had a schedule for
four user hours per day, with
the remaining time dedicated
to hardware and system
development activities. This
guaranteed user schedule
was modified and expanded
several times. By May 1974, the
system operated 24 hours a day,
seven days a week, and was
continuously available to users
except for Saturdays, reserved
for hardware and software
maintenance.

System reliability was better
than 95% uptime during
hours when Task personnel
were present to assist with
operations. Despite being often

awarded contract number NAS2-
6700 for the ALOHA System.
The contract consisted of two
primary tasks. Task I is the one
that gets all the attention, The
ALOHA System network. This
is where all the blood and glory
were made, interconnecting
network systems wirelessly
with radio and eventually
with satellites. A lot of
groundbreaking things came out
of Task I, including the first use
of packet switching, addressing,
wireless collision detection,
and ended up creating the first
commercial use of wireless
network computing in 1975.

This story is not about Task I, it
is about Task II.

Task II was titled ‘Research in
Multi-Processor Computing
Systems’ for the University of
Hawaii to collect the prototype
BCC-500 and move it to Hawaii
to finish its development. The
University of Hawaii built new
facilities to house the computer,
Holmes Hall, which was still
under construction while the

‘Converting to this kind of communication
could save a lot of money. For example, ARPA
spends in excess of $1 million per year for line
charges. With this much money, it could buy a
transponder on a domestic satellite.’

- Norm Abramson

38

unattended, the system has
maintained an overall uptime of
approximately 80%.

1973: Aloha
communications system
connects Hawaii to
ARPANET

Not long after coming online,
in April 1973, the BCC-500 was
connected to a NASA Satellite,
making it the first operational
satellite node on ARPANET.
Otherwise, it was connected to
a node at UCLA through trans-
oceanic phone lines.

Over the next several years,
many pieces of the machine
were improved. Graduate
students at the University of

retroelectro

Hawaii wrote and
published many reports
and documents about
different work done on
the machine over the
years. The BCC-500
remained operational
until January 1980,
when it was retired. A
backup of the BCC-500
system from 1979 is
available online if you
would like to see more
of the file structure.

From GENIE to
ALOHA

The BCC-500, a
pioneering system

in the evolution of computing
history, was a testament to
the ingenuity and collaborative
efforts of the Berkeley Computer
Corporation and later the
University of Hawaii. Initially
conceived under the shadow of
Project GENIE, the BCC-500’s
journey from an ambitious
project to a fully operational
system encapsulates a
significant era of innovation and
development in time-sharing
and networked computing.

Despite facing financial hurdles
and operational challenges, the
dedication of its developers
ensured that the BCC-500 set the
stage for future advancements
in computing.

The BCC-500’s integration into
the ALOHA System marked a
pivotal moment in the history
of computer networking. Its
deployment in Hawaii, under
the ARPA grant, showcased
the potential of wireless
communication and satellite
networking. This groundbreaking
work connected remote
terminals across the islands and
linked Hawaii to the ARPANET,
paving the way for modern
internet technologies. The BCC-
500 remained a vital component
of the ALOHA System until
its decommissioning in 1980,
leaving behind a legacy of
innovation that continues
to influence contemporary
computing and networking
solutions.

Lars Brinkoff (@LarsBrinkoff)
was instrumental in locating
resources for this article, and his
assistance is appreciated.

Figure 6: Aloha Communications System Connects
Hawaii to Arpanet Image source: Computerworld
Volume 7, Issue 15 on April 11, 1973

Figure 7: ARPANET Directory Listing, 1974

https://github.com/larsbrinkhoff/bcc-500
https://github.com/larsbrinkhoff/bcc-500

39
we get technical

1963
ARPA Involvement
with Project GENIE
Begins at UC
Berkeley.

1966
Release of the
SDS-940.

1970
BCC received $1M
investment from
UC Berkeley.

1971
BCC goes out of
business.

1972
The BCC-500 is
disassembled
and shipped to
the University of
Hawaii.

1974
The BCC-500’s
schedule is
expanded to 24
hours a day.

1964
Project Genie
receives the
SDS-930.

1969
Xerox acquires
Scientific Data
Systems.

1970
BCC loses
contracts and
funding from
DPF&G.

1971
ARPA awards a
contract for the
ALOHA System.

1973
The BCC-500
first becomes
operational
as a complete
working system.

1980
The BC-500 is
decommissioned.

References

1. P. S. a. P. Meagher, “Project Genie: Berkeley’s
Piece of the Computer Revolution,” Forefront -
College of Engineering - University of California
Berkeley, Fall 2007.

2. Scientific Data Systems, Technical Manual -
Computer Model 930, Santa Monica, Ca, 1966.

3. “Genie has a Multi-Language Structure for
Simultaneous Use,” The Weekly Newsletter.

4. The New York Times, “Market’s Wary of Peace
Move,” Butte The Montana Standard, 1969.

5. W. L. Harrison, “Supervisor’ Manual,” 1969.
6. B. Lampson, “Some Remarks on a Large New

Time-Sharing System,” Berkeley Computer
Corporation, Berkeley, 1970.

7. V. Lieberman, “U.C Makes High-Risk
Investments,” The Faily Californian, 1970.

8. “Control Data Corp. v. International Business
MacH. Corp., 306 F. Supp. 839 (D. Minn. 1969),”
US District Court for the District of Minnesota,
1969.

9. United States District Court, New York, “IBM
1956 Consent Decree,” 1956.

10. B. Ziegler, “IBM Reaches Settlement To End
Consent Decree,” The Wall Street Journal, 1996.

11. N. Abramson, “The Aloha System - Another
Alternative for Computer Communications,”
University of Hawaii, 1970.

12. Panel, “Artifact Details: ALOHA Panel Oral
History (Catalog 102802997),” Computer
History Museum, 2023.

13. N. Abramson, “The ALOHA System (Jan 1972),”
University of Hawaii, Honolulu, Hawaii, 1972.

14. N. Abramson, “Final Technical Report for
Contract Number NAS2-6700,” University of
Hawaii, Honolulu, 1974.

15. “CPPI Inflation Calculator,” Bureau of Labor
Statitsics.

16. S. Yasinin, “Aloha Communications System
Connects Hawaii to ARPANET,” Computer
World, 1973.

http://bitsavers.trailing-edge.com/pdf/bcc/originals/Admin/BCC_A-11.pdf
https://law.justia.com/cases/federal/district-courts/FSupp/306/839/1794359/
https://law.justia.com/cases/federal/district-courts/FSupp/306/839/1794359/
https://law.justia.com/cases/federal/district-courts/FSupp/306/839/1794359/
https://law.justia.com/cases/federal/district-courts/FSupp/306/839/1794359/
http://www.cptech.org/at/ibm/ibm1956cd.html
http://www.cptech.org/at/ibm/ibm1956cd.html
https://www.computerhistory.org/collections/catalog/102802997
https://www.computerhistory.org/collections/catalog/102802997
https://www.computerhistory.org/collections/catalog/102802997
https://data.bls.gov/cgi-bin/cpicalc.pl?cost1=100&year1=197111&year2=202405
https://data.bls.gov/cgi-bin/cpicalc.pl?cost1=100&year1=197111&year2=202405

40

Is Ultra-Wideband (UWB) the next big wireless technology for smart homes?

Written by:
Jody Muelaner
Contributing Author at DigiKey

Application layer protocol
options for M2M and IoT
functionality

Figure 1: IIoT functions in
industrial automation rely
on increasingly connected
devices employing industrial
protocols for networking.
The abstracted layers of
these networks require no
knowledge of underlying layer
functions … which is why so
much design engineering
focuses on machine networks’
top (application) layer.
Image source: Getty Images

41
we get technical

With adoption of Internet of Things
(IoT) and Industry 4.0 functions,
devices are increasingly connected
via industrial protocols. What’s
more, today’s machine to machine
(M2M) communications are rapidly
standardizing on these protocols.
Complicating matters is that IoT
protocols don’t describe a single
application-layer protocol, as
several standards are in operation.
So, while early IoT implementations
used standard Internet protocols,
there are also dedicated IoT
protocols now available.

Modelling communication
structures and identifying the right
protocol for a particular application

can be daunting. This article
outlines what various protocols
do as well as the options available
for these protocols – so design
engineers can more easily select
the most suitable to integrate.

Defining the application-
layer protocol for industrial
networks

The structures of communication
protocols for digital M2M and IoT
systems are conceptually broken
into abstract layers, with the most
common models having three,
four, five, or seven layers. These
conceptual frameworks assume

Figure 2: Traditional system
architectures are hierarchical, but
Cloud and Fog computing have
blurred the lines between component
functions. That’s prompted use of
new network protocol models.
Image source: motioncontroltips.com

https://www.digikey.com/en/articles/machine-to-machine-networks-for-automated-machine-functions
https://www.motioncontroltips.com/part-1-connectivity-and-iot-in-motion-and-general-automation/

42

Application layer protocol options for M2M and IoT functionality

that every layer essentially ‘hides’
the detailed workings of a given
device or software layer from other
devices or algorithms with which
it’s communicating. That’s because
the layers are defined as containing
just enough information for the
data exchanges at hand.

No matter the model used, all
establish an application layer
as the highest abstraction layer
between devices that communicate
with each other on a network.
Consider the application layer as
a concept of the Open Systems
Interconnection (OSI) model –
in which it was first defined by
the International Organisation
for Standardisation (ISO) nearly
three decades ago for network
communications. This classic
seven-layer model is somewhat
overcomplicated for describing
some of today’s protocols, but is
still useful for fully understanding
data flow within systems:

A protocol’s physical layer allows
the transmission of raw data
(digital bits) as electrical, radio, or
optical signals. This layer specifies
the pin layouts, voltage levels,
data rates, and line impedances
of the physical elements carrying
the data. Ethernet is a common
physical layer protocol. Read the
DigiKey article EtherNet/IP versus
PROFINET for more on this.

The data-link layer connects
network nodes to let devices
establish connections and correct
errors at the physical layer. Within

the IEEE 802 standard, the data-
link layer is divided into a Medium
Access Control (MAC) layer (again,
to let devices connect) and a
Logical Link Control (LLC) layer
for identifying the next layer to be
used (the network layer) as well as
error checking and synchronization.
Read more about the functions of
the data-link layer in the DigiKey
article Implementing Industrial
Ethernet with 32-bit MCUs. In
contrast, the network layer allows
the forwarding of data packets to
network addresses. Where Internet
protocols refer to the Transmission
Control Protocol and Internet
Protocol (TCP/IP) model (covered
in this article’s next section) there’s
an Internet layer between the data
link and network layers. In fact, the
Internet layer is often considered a
part of the network layer.

The first of the next three OSI-
model layers is the transport layer,
which ensures communication
reliability and security during
data-sequence transfers. Then
the session layer controls when
devices connect with each other
and whether the connection is one-
way (simplex) or in two directions
(duplex). Finally, the presentation
layer allows data translation so that
devices using different syntaxes
can communicate.

The focus of this article – the
application layer – is the highest
level of abstraction and the one
with which users and system
software interact.

Internet protocols in
industrial automation

Internet protocols are data-

Figure 3: Modern
networking protocols
(and the application
layer) are often described
using the classic OSI
model of industrial (and
commercial) networks.
In contrast, three-layer
IoT architecture models
set the application layer
above perception and
network layers; four-layer
models put it above data
processing, network,
and sensing layers.
Five-layer IoT protocol
models are similar but
add processing and
enterprise layers. Image
source: Design World

https://www.digikey.com/en/articles/communication-in-industrial-networks
https://www.digikey.com/en/articles/communication-in-industrial-networks
https://www.digikey.com/en/articles/ethernet-ip-versus-profinet
https://www.digikey.com/en/articles/ethernet-ip-versus-profinet
https://www.digikey.com/en/articles/implementing-industrial-ethernet-with-32-bit-mcus
https://www.digikey.com/en/articles/implementing-industrial-ethernet-with-32-bit-mcus
https://www.digikey.com/en/articles/iot-security-fundamentals-part-1-using-cryptography

43
we get technical

communication systems so named
for the way in which they relay data
between networks (and usually
reciprocally) for inter-boundary
communications. Their functions
are often described with the four-
layer model of TCP/IP mentioned
above. Here, the physical network
or link layer is the same as the
OSI model’s physical layer. In
contrast, the TCP/IP Internet layer
(which roughly approximates a
combination of the OSI model’s
data-link and network layer
functions) handles connections as
well as data packets. In IPv6, this
layer uses 128-bit IP addresses
to identify hosts on the network –
and allows more than 1038 unique
hosts.

The transport layer in TCP/IP
generally consists of either the
transmission control protocol
(TCP) or the user datagram
protocol (UDP). TCP is generally
used for human interactions such
as email and web browsing. It
provides logical connections,
acknowledgment of packets
transmitted, retransmission of lost
packets, and flow control. However,
embedded systems use UDP to get
lower overhead and better real-
time performance. UDP works for
domain name servers (DNS) and
the dynamic host configuration
protocol (DHCP) as well as new IoT
applications.

The application layer is the highest
level in the TCP/IP model of
networks. Functions include those
associated with the OSI model’s

session and presentation layers.

Generic TCP/IP application-
layer protocols

Different application-layer
protocols have different data
bandwidths, real-time capabilities,
and hardware requirements.
These factors along with plant
or OEM-team familiarity with a
protocol are often an important
selection criterion. Though early
Internet protocols including the
hypertext transfer protocol (HTTP)
and simple mail transfer protocol
(SMTP) are largely used for human-
driven and human-consumed
communications, TCP/IP protocols
with an IIoT slant are more focused
on machine to machine (M2M) and
other industrial communications.

Complicating matters somewhat is
how many established application-
layer protocols used in TCP/IP for
web-based human interactions with
information also have consumer
and industrial IoT uses. That’s
certainly true for HTTP and SMTP
as well as the secure shell (SSH)
and file transfer protocol (FTP).
Implementing IoT functions
with web technologies is usually
feasible if eXtensible Markup
Language (XML) and JavaScript
Object Notation (JSON) are also
used. One caveat is that using
HTTP has security implications.
That’s why it’s usually best if any
IoT devices in such systems only
include a client – and not a server.
This prevents the device from

receiving connection requests that
could allow unauthorized outside
access to the network. Here, the
WebSocket protocol can establish
a full-duplex communication via
HTTP. Otherwise, the extensible
messaging and presence protocol
(XMPP) may be preferred for
installations that need to address
a large number of devices with
good security and real-time data
communications.

When IoT projects are led by staff
with an IT background, these
familiar standards (from the
human-readable web) may be
preferred. However, newer IIoT
protocols can in some instances
be better suited to M2M and other
industrial communications.

MQTT for vertical
connectivity transport
functions

Seeing the most rapid adoption
in IIoT is the Message Queuing
Telemetry Transport (MQTT)
protocol – a lightweight protocol
initially intended for IoT devices
with limited memory. Offering
operation on compact processing
footprints and requiring minimal
bandwidth, MQTT was first
developed by IBM to connect
sensors on oil pipelines. Unlike
the constrained application
protocol (CoAP), MQTT is already
standardized according to ISO/IEC
20922. MQTT uses the somewhat
more resource-intensive TCP
transport layer and therefore

44

consumes more power … but
messages can be two bytes – even
smaller than those of CoAP.

Due to its open nature, MQTT
can also be particularly easy to
implement. No wonder Amazon
Web Services’ AWS IoT employs
MQTT for message transport and
(with caveats) supports MQTT
based on the v3.1.1 specification.

MQTT does have some limitations,
which may be due to the fact that
MQTT was initially intended as a
telemetry protocol – in contrast
to the IoT-specific Lightweight
Machine to Machine (LwM2M)
protocol to be covered shortly.
Features such as objects,
connectivity monitoring, and
remote device actions aren’t
included in the standard, so
inclusion of these tends to be
vendor specific which degrades
the standardized protocol’s value
somewhat. MQTT also offers no
error-handling abilities. Finally,
although MQTT can be made
secure with a full TLS protocol,
doing so increases its overhead.

Primarily at the enterprise
level: AMQP

Advanced Message Queuing
Protocol (AMQP) is another open
standard with some similarities
with MQTT. It offers advanced
features such as message queuing.
However, the overhead of AMQP is
higher than that of MQTT, making
it poorly suited to connecting very
constrained devices. No wonder its

use in industrial IoT applications
is less common than its use in
performance enterprise messaging.

CoAP for connecting simple
devices

The constrained application
protocol (CoAP) from the Internet
Engineering Task Force (IETF)
allows communication on
low-power networks between
devices with minimal memory
and processing power. It can
operate with very low overhead
and requests and responses can
be as small as four bytes. CoAP
eschews the use of a complex
transport stack for use of UDP
instead. Refer to the DigiKey article
on EtherNet/IP versus PROFINET
for more on UDP. Like HTTP, CoAP
also uses the REST model – with
servers making resources available
under a URL and clients accessing
them via POST, GET, DELETE
and PUT methods. What’s more,
CoAP can be easily translated into
HTTP for integration with other
web functions … and integrates
with XML and JSON. Engineers

should find that connecting IoT
devices with CoAP is very similar to
connecting devices with Web API.

Connecting battery-
powered devices with
LwM2M

An application-layer protocol from
the Open Mobile Alliance is the
LwM2M protocol built specifically
for IoT applications. Employed
in smart-city applications,
shipping-container, and cargo
tracking, automated off-highway
routines, and utilities monitoring,
LwM2M is based on CoAP, so
shares many of its attributes.
The standard encompasses a
wide range of clearly defined and
maintained standard objects as
well as connectivity-monitoring and
remote-device actions. Automatic
firmware upgrades also simplify
the management of LwM2M-
connected devices. Although the
inclusion of modules such as
JSON increases its overhead, it
also makes design work easier for
developers. Because LwM2M has
been designed specifically for IoT

Application layer protocol options for M2M and IoT functionality

Figure 4: Nordic’s SiP is
a low-power MCU with
an integrated LTE-M and
narrowband (NB)-IoT
modem, as well as GPS.
A Software development
kit allows setup of CoAP.
Image source: Nordic
Semiconductor

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-differences
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://www.digikey.com/en/supplier-centers/nordic-semiconductor

45
we get technical

applications, it can also operate
a strong DTLS security protocol
without increasing overhead.

DDS for real-time
distributed applications

The data distribution service (DDS)
is a little different – and is often
classified as an M2M middleware
rather than an application-layer
protocol. It provides secure and
high-performance connections in
(among other things) autonomous
vehicles, power generation, and

air-traffic control systems. In
these settings, DDS supports
the connection of embedded
systems for distributed control
that’s freed from overreliance on
gateways. DDS also handles the
routing and delivery of messages
without requiring intervention
from applications. Plus, the
quality of DDS service parameters
are configurable – so network
operations can be optimized to the
work within system constraints.

Conclusion: IIoT application
layer protocols

All protocols have strengths and
weaknesses, but open-source
options allowing rapid deployment
and security (preferably with low
overhead) are the most suitable
for IoT applications. Embedded
systems and system-on-chip
(SoC) devices with ever-increasing
computing capabilities continue
to spur IIoT implementation – and
further expand what’s possible
at various protocols’ application
layers.

Figure 5: Connext Drive software for autonomous vehicles is built on data distribution service (DDS) middleware – which serves
as part of the foundation for AUTomotive Open System ARchitecture (AUTOSAR) Adaptive and ROS2 software architectures. This
is just one example of how DDS supports IoT software integration.
Image source: Real-Time Innovations

Teleop Fleet Mgmt

Teleop
Path

Planning
Vehicle
Control

Real-time innovations Connext Drive uses DDS
Sample Autonomous Vehicle Architecture

Simulation Test &
ValidationAdaptive

Device
Adaptive
Service

ROS
Component

AUTOSAR
Component

Connext Databus

Connext Databus
CAN BUSAUTOSAR Adaptive (DDS from Connext Drive)

Connext Databus

ROS2
(DDS from Connext Drive)

?

https://www.rti.com/en/

46

Written by:
Stephen Evanczuk
Contributing Author at DigiKey

Deploy a secure Cloud-
connected IoT device
network complete
with Edge computing
capabilities

Though much in demand, the
deployment of an Internet of
Things (IoT) network with Edge
computing resources can be
a daunting undertaking with
multiple requirements for endpoint
devices, Edge computing systems,
and secure Cloud connectivity.
Although discrete elements of
the required solution are readily
available, integrating them all into a
seamless, efficient IoT application
requires immersion in the complex
tasks of implementing not only
the endpoint and Edge hardware
platforms, but also the service
interfaces, communications
methods, and security protocols
required by IoT Cloud providers.

Recently, a steady stream of more
highly integrated IoT solutions has
emerged to help developers get to
market more quickly. For example,
a set of Cloud-ready endpoint and
Edge computing products from
Microchip Technology provides

an off-the-shelf solution designed
to connect easily with Amazon
Web Services (AWS) IoT services
and the AWS IoT Greengrass Edge
computing service.

This article will briefly discuss why
intelligence should be deployed
at the Edge. It will then introduce
Microchip’s AWS-qualified boards
that serve as Cloud-ready sensor
endpoint systems. The article will
then show how those endpoints
can be combined with an Edge
computing platform based on a
wireless system-on-module (SOM)
preloaded with AWS credentials
and service software to provide
near transparent connectivity to the
AWS Cloud.

Combining endpoint and
Edge system

Ready availability of low-cost,
low-power systems has simplified
implementation of so-called

https://www.digikey.com/en/supplier-centers/microchip-technology

47
we get technical

Figure 1: AWS IoT Greengrass simplifies local processing and Edge deployment
of advanced functionality including machine learning models trained in the AWS
SageMaker machine learning environment. Image source: Amazon Web Services

endpoint systems, which are the
sensor and actuator devices that
make up the farthest reaches of the
IoT application periphery.

Although these endpoint systems
connect directly with the Cloud
in many IoT applications, more
complex applications often require
deployment of so-called Edge
systems, which lie functionally
positioned between endpoints and
the IoT Cloud.

By providing local processing
capabilities inloops oroximity
to a set of IoT endpoints, Edge
systems can reduce latency in tight
feedback loops, or meet timing
requirements for industrial process
controls. Edge systems provide
local resources needed to process
more complex algorithms such
as machine learning inference,
or sophisticated preprocessing
routines used to clean data and
reduce the volume and velocity of
data driven to the Cloud. This local
processing capability proves critical
in supporting advanced security
policies and privacy requirements
such as data minimization prior to
transfer across the public Internet.

Enhancing IoT applications
with AWS IoT Greengrass

Amazon Web Services (AWS)
formalises Edge processing
capabilities with its AWS IoT
Greengrass service, which provides
a portion of its Cloud services
running as Greengrass Core on
the Edge device. Designed to

work closely with Cloud services
running on scalable AWS Cloud
resources, Greengrass provides a
relatively straightforward path for
deploying and updating machine
learning inference models built with
tools such as the AWS SageMaker
fully managed machine learning
platform (Figure 1).

Local processing is only one of the
benefits of an Edge service such
as AWS Greengrass. In providing
a sort of interface buffer between
endpoint systems and Cloud
resources, Edge systems also play
a key role in meeting IoT application
requirements for reduced latency,
for enhanced privacy and security,

Figure 2: Within an AWS IoT Greengrass group, endpoint devices can communicate
with each other and the Cloud using MQTT messaging managed by a Greengrass
Core device. Image source: Amazon Web Services

48

and for enhanced availability. AWS
Greengrass provides the foundation
for delivering these capabilities.

In the AWS Greengrass model, after
a one-time discovery phase with
Cloud services, endpoint devices
within a defined Greengrass
group interact with each other
using MQ Telemetry Transport
(MQTT) messaging managed by a
Greengrass Core device (Figure 2).

Once deployed in a Greengrass
group, devices can cooperate to
avoid lengthy roundtrip delays
found in IoT deployments using IoT
devices that communicate directly
with the Cloud. Instead, devices can
signal each other directly through
MQTT channels mediated by the
local processing capabilities of the
Greengrass Core device.

If connectivity to the Cloud is
lost, devices can continue to
function under management
of the Greengrass core device.
Conversely, if a device goes offline,
other devices and the Cloud-
based application can continue to
function using data maintained by
a virtual device shadow associated
with each physical device (Figure
3).

Although straightforward in
concept, implementing this
coordination among a set of IoT
devices can be challenging. For a
typical IoT developer, taking full
advantage of this Edge computing
capability presents a daunting
combination of hardware, software,
and systems administration
challenges. At the hardware level,
a network of suitable endpoint and

Edge computing devices needs to
be built and deployed. Software
needs to be written to implement
secure communications within
the local network of IoT endpoints
and Edge devices, as well as with
Cloud services. Finally, those
devices need to be appropriately
configured, provisioned with
suitable private keys and
certifications, and authenticated
with each other and the IoT Cloud
service.

To simplify the process, a set of
Microchip boards provide AWS-
qualified drop-in solutions for both
endpoint and Edge devices able to
connect simply and securely to the
AWS Greengrass Core locally, and
to the AWS IoT Core in the Cloud.

Cloud-ready endpoint
systems

Designed for rapid deployment
as endpoint systems, Microchip’s
PIC-IoT WA and AVR-IoT WA
boards are designed to provide
out-of-the-box connectivity with
AWS IoT Core. The two boards
offer the same overall functionality
but are designed to provide
familiar platforms for developers
accustomed to working with the
Microchip PIC microcontroller
family, and to those working
with the Microchip AVR ATmega
microcontroller family. Based
on the Microchip ATMEGA4808
8-bit microcontroller, the AVR-IoT
WA board uses the same set of
components as the PIC-IoT WA

Figure 3: Edge computing service architectures like AWS IoT Greengrass help
maintain availability by providing shadow devices that can maintain the latest device
state data, allowing IoT applications to continue to function even if the associated
physical device goes offline. Image source: Amazon Web Services

Deploy a secure Cloud-connected IoT device network complete with Edge computing capabilities

https://www.digikey.com/product-detail/en/microchip-technology/EV54Y39A/150-EV54Y39A-ND/11594550
https://www.digikey.com/product-detail/en/microchip-technology/EV15R70A/150-EV15R70A-ND/11594576
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL74wTQgqQBmAhgDYDOehJ4AVgAMVarRAJIpAA4BLFDSA
https://www.digikey.com/en/products/filter/embedded-microcontrollers/685?s=N4IgjCBcoLQExVAYygFwE4FcCmAaEA9lANogCcIAugL74wAsiIKkAZgIYA2AznoSSDhwAzAA4ArFWq1BA9qgC22AObspQA
https://www.digikey.com/product-detail/en/microchip-technology/ATMEGA4808-MFR/ATMEGA4808-MFRCT-ND/9342185

49
we get technical

Figure 4: The Microchip AVR-IoT WA and PIC-IoT WA boards provide Cloud-ready
endpoint systems that include the same complement of support devices built around
different Microchip microcontrollers, including a 16-bit PIC microcontroller for the
PIC-IoT WA board shown here. Image source: Microchip Technology

(Figure 4), which is based on the
Microchip PIC24FJ128GA705 16-bit
microcontroller.

For connectivity, the boards each
include a Microchip ATWINC1510-
MR210PB certified Wi-Fi module
designed specifically for low-power
IoT devices. The module integrates
8 megabits (Mbits) of flash and a
complete transmission and receiver
radio frequency (RF) signal chain
including power amplifier (PA), low-
noise amplifier (LNA), RF switch,
power management, and printed
antenna. Along with integrated boot
read-only memory (ROM) for rapid
firmware boot capability, the built-in
network stack supports standard
Internet protocols using hardware
accelerators to speed Transport
Layer Security (TLS) and Wi-Fi
security protocols.

Besides a Microchip MCP9808
precision digital temperature
sensor and a Vishay TEMT6000X01
photodiode sensor, each board
includes a mikroBUS connector.
Using this connector, developers
can easily expand the hardware
base by selecting add-on boards
from the broad selection of
available Mikroe Click boards. For
power and battery management,
the boards each include a
Microchip MCP73871T-2CCI/ML
device, which provides both system
power and lithium-ion battery
charging from a USB power source
or wall adapter.

For security, each board includes
a Microchip ATECC608A secure
element. For these boards, this
device comes pre-provisioned with
keys and certificates to provide

out-of-the-box support for AWS
IoT authentication and security
mechanisms.

Using their collection of on-board
hardware components and pre-
loaded firmware, the boards are
designed to connect with minimal
effort to AWS IoT Core. Developers
need only power up the board using
a micro USB cable connected to
their personal computer. After
the board connects to a local
Wi-Fi access point using its own
credentials or the developer’s,
it automatically establishes an
MQTT connection with AWS IoT
Core using the Wi-Fi module’s
built-in TCP/IP stack and pre-
provisioned security credentials.
After establishing that MQTT
connection, the board immediately
begins transmitting data from its
temperature and light sensors.
Developers can view the results
on a device-specific page in a
Microchip sandbox account.

Microchip provides this baseline
application in separate repositories
for PIC-IoT WA code and AVR-
IoT WA code. By examining this
code, developers can gain a quick
understanding of the basic design
patterns, such as the use of MQTT
connections when communicating
with the Cloud to send sensor data
and to receive commands or data
(Listing 1).

Developers can extend this code
using a variety of development
resources. Microchip supports
custom software development

https://www.digikey.com/product-detail/en/microchip-technology/PIC24FJ128GA705T-I-M4/PIC24FJ128GA705T-I-M4CT-ND/10231402
https://www.digikey.com/product-detail/en/microchip-technology/ATWINC1510-MR210PB1961/ATWINC1510-MR210PB1961-ND/9657714
https://www.digikey.com/product-detail/en/microchip-technology/ATWINC1510-MR210PB1961/ATWINC1510-MR210PB1961-ND/9657714
https://www.digikey.com/product-detail/en/microchip-technology/MCP9808T-E-MS/MCP9808T-E-MSCT-ND/5169548
https://www.digikey.com/en/supplier-centers/vishay-semi-opto
https://www.digikey.com/product-detail/en/vishay-semiconductor-opto-division/TEMT6000X01/751-1055-1-ND/1681410
https://www.digikey.com/en/products/filter/evaluation-boards-expansion-boards-daughter-cards/797?s=N4IgjCBcpg7ALAJiqAxlAZgQwDYGcBTAGhAHsoBtEAZlgFYA2eeEAXRIAcAXKEAZS4AnAJYA7AOYgAviQC0yaCHSQhAV2JlKIAJxsZIWREXLs%2BDeUhUw8WBFZSHQA
https://www.digikey.com/product-detail/en/microchip-technology/MCP73871T-2CCI-ML/MCP73871T-2CCI-MLCT-ND/7065594
https://www.digikey.com/product-detail/en/microchip-technology/ATECC608A-SSHDA-T/ATECC608A-SSHDA-TCT-ND/7928238
https://github.com/microchip-pic-avr-solutions/pic-iot-aws-sensor-node
https://github.com/microchip-pic-avr-solutions/avr-iot-aws-sensor-node-mplab
https://github.com/microchip-pic-avr-solutions/avr-iot-aws-sensor-node-mplab

50

// This will get called every 1 second only while we have a
valid Cloud connection

static void sendToCloud(void)

{

 static char json[PAYLOAD_SIZE];

 static char publishMqttTopic[PUBLISH_TOPIC_SIZE];

 ledTickState_t ledState;

 int rawTemperature = 0;

 int light = 0;

 int len = 0;

 memset((void*)publishMqttTopic, 0,
sizeof(publishMqttTopic));

 sprintf(publishMqttTopic, “%s/sensors”, cid);

 // This part runs every CFG_SEND_INTERVAL seconds

 if (shared_networking_params.haveAPConnection)

 {

 rawTemperature = SENSORS_getTempValue();

 light = SENSORS_getLightValue();

 len = sprintf(json,”{\”Light\”:%d,\”Temp\”:%d.%02d}”,
light,rawTemperature/100,abs(rawTemperature)%100);

 }

 if (len >0)

 {

 CLOUD_publishData((uint8_t*)publishMqttTopic
,(uint8_t*)json, len);

 if (holdCount)

 {

 holdCount--;

 }

 else

 {

 ledState.Full2Sec = LED_BLIP;

 LED_modeYellow(ledState);

 }

 }

//This handles messages published from the MQTT server
when subscribed

static void receivedFromCloud(uint8_t *topic, uint8_t
*payload)

{

 char *toggleToken = “\”toggle\”:”;

 char *subString;

 ledTickState_t ledState;

 sprintf(mqttSubscribeTopic, “$aws/things/%s/shadow/
update/delta”, cid);

 if (strncmp((void*) mqttSubscribeTopic, (void*) topic,
strlen(mqttSubscribeTopic)) == 0)

 {

 if ((subString = strstr((char*)payload, toggleToken)))

 {

 if (subString[strlen(toggleToken)] == ‘1’)

 {

 setToggleState(TOGGLE_ON);

 ledState.Full2Sec = LED_ON_STATIC;

 LED_modeYellow(ledState);

 }

 else

 {

 setToggleState(TOGGLE_OFF);

 ledState.Full2Sec = LED_OFF_STATIC;

 LED_modeYellow(ledState);

 }

 holdCount = 2;

 }

 }

 debug_printer(SEVERITY_NONE, LEVEL_NORMAL, “topic:
%s”, topic);

 debug_printer(SEVERITY_NONE, LEVEL_NORMAL,
“payload: %s”, payload);

 updateDeviceShadow();

}

Listing 1: Developers can examine code samples in Microchip’s software repositories to a gain better
understanding of key design patterns such as exchanging MQTT messages with Cloud services as shown in
these two functions. Image source: Microchip Technology

Deploy a secure Cloud-connected IoT device network complete with Edge computing capabilities

51
we get technical

with its MPLAB X integrated
development environment (IDE),
Cloud-based MPLAB Xpress IDE,
and free MPLAB XC compilers.
For debugging, each board
includes the Microchip PICkit

On-Board (PKOB) nano debugger,
which eliminates the need for an
additional debugging hardware
interface. Developers access
the PKOB debugger through the
USB connection to their personal

computer while working in the
MPLAB X IDE.

AWS Greengrass-ready
solution

Microchip makes augmenting
their IoT network with Edge
computing resources based on
AWS Greengrass nearly as simple
as deploying Cloud-connected
endpoints.

For the Edge computing
platform, Microchip provides
its ATSAMA5D27-WLSOM1
wireless (WL) system-on-module
(SoM) with AWS qualified AWS
Greengrass support. As with the
Microchip endpoint boards, the
ATSAMA5D27-WLSOM1 provides a
comprehensive hardware platform
designed to connect easily to AWS
IoT Core services (Figure 5).

For its host processor, the
WLSOM1 uses the low-power
SAMA5D27 system-in-package
(SiP) ATSAMA5D27C-LD2G-CU,
which integrates Microchip’s
high-performance Arm Cortex-A5
processor-based SAMA5D27,
which contains two gigabits (Gbits)
of low-power double data rate 2
synchronous dynamic random-
access memory (LPDDR2-SDRAM).

As with its endpoint boards,
Microchip’s WLSOM1 includes
a certified wireless module. In
this case, Microchip uses its
ATWILC3000, which supports
both Wi-Fi and Bluetooth
connectivity with coexistence

Figure 5: The Microchip ATSAMA5D27-WLSOM1 integrates a full complement of
devices required to deliver an AWS IoT Greengrass qualified Edge computing system.
Image source: Microchip Technology

Figure 6: To ensure secure communications transactions, AWS Cloud services and
AWS IoT Greengrass groups rely on multiple certificates backed by private keys
stored in endpoints and the Greengrass Core device Image source: Amazon Web
Service

https://www.microchip.com/mplab/mplab-x-ide
https://www.microchip.com/mplab/mplab-xpress
https://www.microchip.com/mplab/compilers
https://www.digikey.com/product-detail/en/microchip-technology/ATSAMA5D27-WLSOM1/150-ATSAMA5D27-WLSOM1-ND/10673432
https://www.digikey.com/product-detail/en/microchip-technology/ATSAMA5D27C-LD2G-CU/ATSAMA5D27C-LD2G-CU-ND/9947604
https://www.digikey.com/en/supplier-centers/arm
https://www.digikey.com/product-detail/en/microchip-technology/ATWILC3000-MR110UA/ATWILC3000-MR110UA-ND/5322331

52

using a combination of integrated
hardware accelerators, integrated
processors, and stack firmware.
The WLSOM1 also offers wired
connectivity managed by a
Microchip KSZ8081RNAIA Ethernet
transceiver. Microchip includes its
64 Mbit SST26VF064BEUI flash,
which comes pre-provisioned
with an IEEE allocated 6-byte
extended unique identifier (EUI-48)
and 8-byte EUI-64. This ensures
a globally unique MAC address
in order to reliably connect to the
public Internet. (See ‘Flash Memory
with a Built-In MAC Address Can
Really Help During Development’.)

Finally, the WLSOM1 includes the
ATECC608A secure element for
hardware-based security. Thanks
to its high level of integration, the
WLSOM1 requires relatively few
components beyond decoupling
capacitors and pullup resistors to
implement the hardware interface
in a board design.

Bringing up a WLSOM1-based
board on AWS IoT Greengrass

requires very little effort. In fact,
most of the effort involves setting
up AWS services for its use.
Microchip provides developers
with step-by-step guides for this,
including how to create an AWS
account and how to define a
Greengrass group of Greengrass
core and endpoint devices. After
building the target system on
a Linux development system,
developers upload the target
image, Greengrass Core software,
and certificates to the WLSOM1,
typically using a secure digital card
(SDCard) flash drive.

Authentication and secure
communications operate
transparently to the developer
thanks to the hardware-based
security provided by the
ATECC608A secure element. For
Greengrass Edge systems, however,
the ATECC608A plays a deeper
role in protecting the private keys
underlying secure communications
between the Greengrass Core
running on the Edge system and the
AWS Cloud.

Devices in a Greengrass group
rely on digital certificates to
authenticate each other and their
messages within the group and
with Cloud-based AWS services
(Figure 6). If the underlying security
mechanisms and protocols are
compromised due to exposed
private keys or fraudulent
certificates, the group and even
Cloud-based resources can be
compromised in turn.

AWS protects itself and its
users’ applications by permitting
interactions only with trusted
devices that incorporate a
hardware secure element able to
protect the private keys used for
secure communications between
the Greengrass Core device and
the AWS IoT Core, and between
the Greengrass Core device and
endpoints (Figure 7).

AWS has identified the WLSOM1
as well as the ATECC608A
secure element as Greengrass
qualified solutions able to meet
its security requirements. In fact,

Figure 7: A Greengrass
Core device relies
on secure storage
of private keys using
secure elements such
as the ATECC608A
device integrated in the
Microchip ATSAMA5D27-
WLSOM1 wireless SOM.
Image source: Amazon
Web Service

Deploy a secure Cloud-connected IoT device network complete with Edge computing capabilities

https://www.digikey.com/product-detail/en/microchip-technology/KSZ8081RNAIA-TR/576-4174-1-ND/3728305
https://www.digikey.com/product-detail/en/microchip-technology/SST26VF064BEUIT-104I-MF/SST26VF064BEUIT-104I-MFCT-ND/10270403
https://www.digikey.com/en/blog/flash-memory-with-a-built-in-mac-address-can-really-help-during-development
https://www.digikey.com/en/blog/flash-memory-with-a-built-in-mac-address-can-really-help-during-development
https://www.digikey.com/en/blog/flash-memory-with-a-built-in-mac-address-can-really-help-during-development

53
we get technical

Figure 8: AWS IoT Greengrass enables Edge systems to provide local
processing including use of AWS Lambda functions for simple integration
with AWS Cloud services for data storage, machine learning, and other
capabilities. Image source: Amazon Web Service

the ATECC608A supports AWS’
enhanced security capability
provided in IoT Greengrass
Hardware Security Integration
(HSI). HSI uses the Public Key
Cryptography Standards #11,
which defines an industry standard
application programming interface
(API) for communications between
a processor and a hardware
security module (HSM) used to
store private keys. In the WLSOM1,
the ATECC608A is designated
as an AWS Greengrass qualified
HSM Support for this standard
security interface is particularly
important for Linux-based systems
used in Edge systems in general,
and in Greengrass Core devices in
particular.

Using this secure software
foundation, developers can
safely extend their Greengrass
Core Edge systems with local
processing capabilities using AWS
Lambda functions, which provide
a relatively simple event-driven
programming model. While custom
code running on the Greengrass
Core device can support specific
application requirements, AWS
Lambda functions allow these
devices to interact directly with
AWS Cloud services. For example,
developers can easily implement
Lambda functions that connect
endpoints with AWS services, such
as Amazon’s NoSQL DynamoDB
database management system for
data storage or other services in

the extensive set of AWS offerings
(Figure 8).

Conclusion

Deployment of an IoT network with
Edge computing resources can
prove a daunting enterprise with
multiple requirements for endpoint
devices, Edge computing systems,
and secure Cloud connectivity.
Individual pieces of the required
solution exist but integrating them
into a coordinated IoT application
has left developers to face the
complex tasks of implementing the
service interfaces, communications
methods, and security protocols
required by IoT Cloud providers.

As shown, a set of Cloud-ready
endpoint and Edge computing
products from Microchip
Technology provides an off-the-
shelf solution designed to connect
easily with AWS IoT services and
the AWS IoT Greengrass Edge
computing service. Developers
can use Microchip’s AWS
qualified endpoint boards and a
wireless system-on-module Edge
computing platform to provide near
transparent connectivity to the AWS
Cloud and accelerate IoT network
deployment.

Further reading

Flash Memory with a Built-In MAC
Address Can Really Help During
Development

https://www.digikey.com/en/blog/flash-memory-with-a-built-in-mac-address-can-really-help-during-development
https://www.digikey.com/en/blog/flash-memory-with-a-built-in-mac-address-can-really-help-during-development
https://www.digikey.com/en/blog/flash-memory-with-a-built-in-mac-address-can-really-help-during-development

54

Use rugged multiband
antennas to solve the
mobile connectivity
challenge
Written by:
Bill Schweber,
Contributing Author at DigiKey

Figure 1: Mobile connectivity using various standards and
bands is now an expectation on mobile, high-speed installations
such as trains, incurring challenges due to wind resistance and
environmental ruggedness.
Image source: TE Connectivity

55
we get technical

Along with smartphones and Internet of
Things (IoT) devices, another major driver for
mobile wireless connectivity is transportation
applications, including railroads, trucks, and
asset tracking.

These applications put a unique
set of significant demands on the
system antenna such as vibration,
shock, temperature extremes, rain,
humidity, and the need to operate
across wide bandwidths and even
multiple bands, all while providing
consistent performance.

While it is possible to design
and build a suitable antenna, in
nearly all challenging applications
it makes the most sense to use
a standard, properly designed,
well-built, fully characterized, off-
the-shelf unit. Doing so reduces
cost and development time while
increasing the level of confidence in
the final design.

This article examines the issues
associated with transportation
antenna design. It then introduces
two multiband antennas from TE
Connectivity designed to mount
on the surface of an enclosure,
including a basic ‘box’ and possibly
an exposed moving vehicle.

Applications drive
implementation

The antenna is the vital transducer
between an electronic circuit and

free-space electromagnetic (EM)
fields, and so is often the most
exposed element of the design. Yet
it must deliver the desired electrical
and RF performance despite harsh
ambient conditions, using a form
factor compatible with the overall
system design.

For freight systems and especially
high-speed passenger rail, it must
also be easily integrated into an
aerodynamic enclosure that both
presents minimal wind resistance
and can be protected from harsh
environmental conditions (Figure
1). Similar constraints apply to
asset tracking situations where
the antenna must be exposed for
receiving global navigation satellite
system (GNSS) signals.

The optimal antenna is a careful
blend of application-specific
characteristics, including desired
radiation patterns, proper
impedance match, low voltage
standing wave ratio (VSWR),
mechanical integrity, enclosure
suitability, and ease of electrical
connections. There is also the
need in many cases to enhance
the signal path and to maximize
the front-end signal-to-noise ratio

(SNR) through the use of an active
antenna with an integrated low-
noise amplifier (LNA).

As with all components, there are
some top-tier parameters used
to characterize nearly all antenna
designs and installations, as well
as others which may be more or
less critical in a given situation. For
antennas, radiation patterns and
performance across the specified
band are key considerations.

Implementing antenna
principles

The orientation of antennas used
for transportation and asset
tracking is a challenge as it is

https://www.digikey.com/en/supplier-centers/te-connectivity-amp
https://www.digikey.com/en/supplier-centers/te-connectivity-amp

56

Use rugged multiband antennas to solve the mobile connectivity challenge

random and changing, making
it important for them to have
a consistent, omnidirectional
pattern for the top and side views
throughout the specified band.

For example, the TE Connectivity
1-2309605-1 M2M MiMo LTE dual
antenna is designed for both 698
to 960 megahertz (MHz) and 1710
to 3800 MHz bands and targets
2G, 3G, 4G, cellular, GSM, and LTE
applications (Figure 2). A single
antenna can be effective for this list
of standards because it is agnostic
with respect to the specific signal
format it is conveying or standard it
is supporting; its design is primarily
defined by frequency, bandwidth,
and power.

Note that a ‘dual’ antenna is not
the same as a ‘dual-band’ antenna.
A dual antenna, such as the
1-2309605-1, has two independent
antennas in a single housing and
each has its own feed; a dual-band
unit is a single antenna with one
feed, designed to support two (or
more) bands.

Looking at the lower-band antenna
of the 1-2309605-1, its radiation
pattern for both top and side
orientations is uniform across the

bandwidth, from the lower end at
around 700 MHz, extending through
to the upper frequencies, at about
900 MHz (Figure 3).

At 700 MHz (the low end of the
frequency band), the gain in
decibels relative to an isotropic
antenna (dBi) – a standard metric
indicating antenna directivity – is
just 1.5 dBi, which represents a
fairly uniform radiation pattern.
This uniformity and evenness
contributes
to consistent
performance,
regardless of antenna
orientation. Further,
the radiation pattern
for the 900 MHz
higher-frequency end
is also fairly even with
gain of just 4.5 dBi.

Another important
antenna parameter
is the VSWR, which
is formally defined
as the ratio of
the maximum to
minimum voltage,
or the ratio between
transmitted and
reflected voltage
standing waves on a
lossless transmission

line. In an ideal scenario, the VSWR
would be 1:1. While this is often
difficult to achieve, it’s usually
acceptable practice to work with a
VSWR in the low single digits.

For the 1-2309605-1 M2M MiMo
LTE dual antenna, which can
handle up to 20 watts of transmit
power, the maximum VSWR when
measured with 3 meters (m) of
RG174 cable is around 3:1 at one
end, and closer to 1.5:1 through
most of its bands of operation
(Figure 4). In general, this is low
enough for many of the targeted
applications.

In Figure 4, green is the lower-
frequency element #1, red is the

Figure 3: The side (left) and top (right) gain plots of the
1-2309605-1 at 700, 800, and 900 MHz (top row, middle
row, bottom row, respectively) show a fairly uniform
radiation pattern. Image source: TE Connectivity

Figure 2: The TE Connectivity
1-2309605-1 is a single module
comprising two independent antennas,
one for 698 to 960 MHz operation
and the other for 1710 to 3800
MHz operation. Image source: TE
Connectivity

https://www.digikey.com/en/products/detail/te-connectivity-amp-connectors/1-2309605-1/7035216

57
we get technical

higher-frequency element #2,
and black is for elements #1 and
#2 in free space, while blue is for
elements #1 and #2 on a 400 × 400
millimeter (mm) ground plane.

Co-sited antennas

It is possible to co-locate two or
more separate antennas to cover
multiple bands. However, this leads
to several potential problems. First,
there’s the obvious issue of space
and mounting hardware required
on a panel or other surface, as well
as the associated
installation costs.
Second, there are
concerns about EM
interaction between
antennas which will
affect their patterns
and performance; this
constrains how they
can be placed with
respect to each other.
This interaction is
measured as antenna
isolation, defining
to what extent an
antenna will pick up

radiation from another antenna.

The solution to this quandary is
to use a single antenna unit that
combines multiple antennas within
a single housing or enclosure.
Mechanically, this reduces overall
size, simplifies installation and
antenna-cable routing, and
presents a streamlined external
appearance.

Electrically, it means that the
isolation between the antennas
can be measured and specified
in advance, minimizing concerns

about unexpected or unforeseen
interaction. For the 1-2309605-
1 M2M MiMo LTE dual antenna,
the isolation is at least 15 dB,
increasing towards the centers of
both bands which the unit serves
(Figure 5).

An active receive-antenna
function

In addition to the two bands
covered by the 1-2309605-1 dual
antenna, many applications such as
asset tracking also need to receive
signals from GPS (US), Galileo
(Europe), and Beidou (China) GNSS
systems for position or timing

Figure 4: The VSWR (vertical axis) for the 1-2309605-1 M2M MiMo LTE dual antenna
as measured with 3 m of RG174 cable shows a low value over the entire active
frequency range (x-axis). Image source: TE Connectivity

Figure 5: The isolation (y-axis, dB) between the two antennas within the 2309605-1
M2M MiMo LTE dual antenna module is 15 dB or better, measured as a function of
frequency (x-axis, MHz). Image source: TE Connectivity

58

Use rugged multiband antennas to solve the mobile connectivity challenge

information. To simplify this task
and avoid the need for another
external discrete antenna, TE offers
the 1-2309646-1. This adds a third,
receive-only antenna for GNSS
signals between 1562 – 1612 MHz
to the two antennas of the dual-
antenna unit.

However, the need to receive GNSS
signals adds another challenge for
the system designer that goes back
to the basics of the transmit versus
receive functions. When used for
transmitting, the antenna and its
feedline are in a deterministic
situation. They take the known,
controlled, well-defined signal from
the transmitter power amplifier
(PA) and radiate it. There is little
concern about internal noise on
that signal, in-band interference, or
out-of-band signals between the PA
and the antenna.

Due to the reciprocity principle
which applies to all antennas,
the same physical antenna used
for transmitting can be used for
receiving. However, the operating
conditions for receiving are

quite different than they are for
transmitting. Since the antenna
is trying to capture a signal with
unknowns in the presence of
in-band and even out-of-band
interference and noise, the desired
received signal is not deterministic
as it has many random
characteristics.

In addition, the received signal
strength is low (on the order of
microvolts to a few millivolts) and
the SNR is also low. For GNSS
signals, the received signal power
is typically between -127 and -25
dB relative to one milliwatt (dBm),
while the SNR is typically between
10 and 20 dB. This fragile signal
will be attenuated due to losses
in the cable between the antenna
and receiver front-end, and it will
also have its SNR degraded by
unavoidable thermal and other
noise in the transmission cable.

For these reasons, the 1-2309646-
1 incorporates an LNA as another
feature for its third, receive-only
GNSS antenna. The LNA provides

42 dB gain for the GNSS signals,
thereby significantly boosting
the received signal strength. To
simplify the use of the LNA, it
receives its power (3 to 5 volts DC,
at no more than 20 milliamps (mA))
via the amplified RF signal’s coaxial
cable using a well-established
superimposition technique.

DC power is sent on the cable
between the receiver unit to the
LNB (Figure 6). The DC power
for the LNA (V1) is blocked from
reaching the radio head unit (front-
end) by small series capacitors (C1
and C2). These capacitors do allow
the amplified RF signal from the
antenna (ANT1) to pass to the radio
head unit (OUT). At the same time,
the amplified RF signal is blocked
from going back to the power
supply V1 by series inductors
(chokes) L1 and L2. In this way, DC
power to the LNA and amplified RF
from the LNA to the radio head unit
can share the same interconnection
coaxial cable.

Making the physical
connection

Any antenna or assembly of
antenna elements needs to have a
reliable, convenient, and electrically
and mechanically secure way to
be connected and disconnected
from the radio front-end they serve.
Further, the complete antenna
assembly needs to be protected
from the environment and be easy
to mount with minimal impact on

Figure 6: The DC power to the antenna LNA can be superimposed on the cable
carrying the antenna/LNA output using a clever arrangement of inductors and
capacitors which separate and isolate the DC power and RF signal at each end.
Image source: Electronics Stack Exchange

https://www.digikey.com/en/products/detail/te-connectivity-amp-connectors/1-2309646-1/7035215

59
we get technical

the mounting surface.

To meet these goals, each band
of the two-band 1-2309605-1 and
the three-band 1-2309646-1 is
equipped with a 3-meter RG-174
coaxial cable, which is terminated
with a standard SMA plug (Figure
7). As a result, connecting or
disconnecting one or more of the
antennas is straightforward and
can easily be done in the factory
during system assembly, or in the
field as an add-on.

Further, attachment of the multi-
antenna module to the system’s
surface is eased by use of a single
internal 18 mm mounting rod, plus
an acrylic adhesive pad around
the bottom edge of the antenna
housing. Attachment of the
antenna is a quick operation that
leaves no exposed hardware to rust,

loosen, or be incorrectly torqued.

The housing of these antennas
is optimised for mobile, high-
speed motion applications. The
streamlined unit is just 45 mm wide
and 150 mm long with rounded
edges (similar to the ‘shark fin’
on the roof of automobiles) to
minimize its drag coefficient and
wind resistance. Further, the UV-
stabilized material of the enclosure
ensures that exposure to sunlight
will not weaken the housing over
time.

Conclusion

Mobile, high-speed, multiband
wireless connectivity for
transportation requires an antenna
assembly that can meet demanding
electrical, environmental, and

mechanical objectives. Two-
antenna and three-antenna
modules from TE Connectivity
provide low band, high band, and
optional GNSS band antennas,
along with an internal LNA for the
latter. These units are equipped
with individual coaxial cables and
connectors for each antenna,
plus a simple surface or panel
mount arrangement to facilitate
installation and provide critical
environmental ruggedness.

Related content

TE Connectivity, Antenna Products

DigiKey, Beyond Wires: Antennas
Evolve and Adapt to Meet
Demanding Wireless Requirements

DigiKey, Why a Good LNA is Key to
a Viable Antenna Front-End

Figure 7: Each antenna within the
1-2309605-1 and 1-2309646-1 has its
own RG-174 coaxial cable with SMA
plug termination to simplify installation,
attachment, test, and disassembly if
needed. Image source: TE Connectivity

https://www.digikey.com/en/product-highlight/t/te-connectivity-amp/antenna-products
https://www.digikey.com/en/blog/beyond-wires-antennas-evolve-and-adapt
https://www.digikey.com/en/blog/beyond-wires-antennas-evolve-and-adapt
https://www.digikey.com/en/blog/beyond-wires-antennas-evolve-and-adapt
https://www.digikey.com/en/blog/why-a-good-lna-is-key-to-a-viable-antenna-front-end
https://www.digikey.com/en/blog/why-a-good-lna-is-key-to-a-viable-antenna-front-end

60

Written by:
Bill Schweber,
Contributing Author at DigiKey

Getting started with
Zephyr: a developer’s
guide to your first project
Written by:
Paige West, Editor at
Electronic Specifier

61
we get technical

Zephyr OS is an open-source real-
time operating system (RTOS) that,
while developed as a project hosted
by the Linux Foundation, operates
independently within its ecosystem.
Primarily designed for embedded
devices, Zephyr OS has attracted
contributions from a diverse range
of industry leaders, establishing
itself as a key player in embedded
systems and IoT.

This article will introduce
developers to Zephyr, outline core
concepts, and help readers execute
their first ‘Hello World’ project.

What is an RTOS and why
use it?

For many simple applications, such
as constantly reading a sensor and
displaying the results, a developer
may decide to program using
a straightforward ‘bare metal’
approach. With this method, the
program executes in a single ‘round

robin’ or ‘super loop’. This offers
development simplicity but is not
particularly efficient, either in terms
of power consumption or utilization
of the microcontroller’s resources.
Interrupt service routines (ISR)
provide a means to interrupt
program flow based on defined
events – see Figure 1 left. As use
cases become more complicated,
for example, using more
sophisticated sensors and lots of
different system functions or tasks,
implementing a state machine is a
popular way to program embedded
systems. Based on modelling
an embedded system behavior
according to defined conditions
and transitions, state machines are
used widely.

As application complexity
grows, and particularly where
the system is required to control
time-constrained events, using
an RTOS becomes essential. By
real-time, the inference is that the

application requires a predictable
and deterministic response to
performing tasks. This might
include reading sensors and
controlling associated actuators
within a given time window rather
than when the microcontroller has
finished some other tasks. An RTOS
provides an embedded developer
with the capability to manage
and schedule multiple tasks and
control communications between
individual tasks. Essentially, the
RTOS ‘sits above’ the application
code and takes control of the
hardware domain, such as the
processor resources, I/O, and
peripheral interfaces, effectively
decoupling the application from
the physical hardware. The RTOS
schedules individual threads tasks
according to priority and resource
availability – see Figure 1 right.

An RTOS is utilized for anything that
requires a predictable and reliable
behavior, such as controlling the

Figure 1: Program flow
using a bare-metal
approach (left) and an
RTOS (right) Image source:
Nordic Semiconductor

https://www.zephyrproject.org/

62

movement of an industrial robot.
Other examples include those
running wireless communication
stacks, networking peripherals, or
those used for motor control.

Basic architecture and key
benefits

Zephyr OS is a small, yet highly
scalable RTOS that requires less
than 8KB Flash, less than 5KB RAM
and suits a wide variety of use
cases from small sensor nodes
to complex multi-core systems.
Zephyr’s architecture is specifically
tailored for lightweight and flexible
design, which is ideal for embedded
systems and IoT applications. Its
basic architecture includes the
following elements:

 ■ Kernel configuration: although
the Zephyr kernel primarily
operates as a microkernel

designed for minimal memory
usage and modular functionality,
it can also be configured
as a monolithic kernel. This
flexibility allows for optimisation
based on the complexity and
size constraints of the target
embedded device.

 ■ Device drivers: Zephyr offers
an extensive library of device
drivers for integration of various
hardware components.

 ■ Middleware: includes file
systems, networking stacks,
and protocol libraries essential
for building complex embedded
systems. This layer offers
crucial services like connectivity,
data management, and
communication protocols.

 ■ Application layer: Zephyr’s
application layer sits atop the
underlying infrastructure and
gives developers the flexibility

to build custom apps utilizing its
features and libraries.

The following are key benefits of
Zephyr OS for IoT and embedded
system applications:

Real-time capabilities
As an RTOS, a standout feature
of Zephyr OS is its real-time
capabilities. These capabilities are
rooted in efficient scheduling and
interrupt handling mechanisms,
which are vital for applications
requiring precise timing and
high reliability, such as industrial
automation or medical devices.

Scalability and modularity
The scalability of Zephyr is largely
attributed to its modular design
which allows developers to include
or exclude components based on
project requirements, enhancing
both the flexibility and scalability
of the system. This modular
architecture makes Zephyr suitable
for a broad range of devices, from
simple sensors to smart devices.

Hardware support
Zephyr OS is compatible with
various hardware architectures,
including x86, ARM, and RISC-V.
However, it supports an extensive
array of microcontrollers and
processors.

The Zephyr kernel supports the
following architectures:

 ■ ARCv2 (EM and HS) and ARCv3
(HS6X)

 ■ ARMv6-M, ARMv7-M, and
ARMv8-M (Cortex-M)

Getting started with Zephyr: a developer’s guide to your first project

63
we get technical

 ■ ARMv7-A and ARMv8-A
(Cortex-A, 32- and 64-bit)

 ■ ARMv7-R, ARMv8-R (Cortex-R,
32- and 64-bit)

 ■ RISC-V (32- and 64-bit)
 ■ SPARC V8
 ■ Intel x86 (32- and 64-bit)
 ■ MIPS (MIPS32 Release 1

specification)
 ■ NIOS II Gen 2
 ■ Tensilica Xtensa

Connectivity
Zephyr OS supports various
wireless standards and protocols,
including Bluetooth Low Energy
(BLE), Wi-Fi, and LoRa. It also
accommodates various wired
connectivity options and integrates
with most networking stacks,
allowing devices to connect and
communicate in diverse network
environments. This robust
connectivity is crucial for devices
that need to transmit data, receive
updates, and interact with other
devices and services.

Security features
Security is a key concern in IoT, and
Zephyr addresses this with a robust
emphasis on features designed to
protect devices against threats.
These features include secure

boot, cryptographic libraries, and
regular updates, which are key
considerations for developers
and manufacturers deploying
IoT devices in sensitive or critical
applications.

Community and ecosystem
Zephyr OS has a vibrant community
which extends beyond developers
and commercial entities to
include academic institutions and
research bodies contributing to
its continuous development and
improvement. This community-
driven approach ensures that
Zephyr OS remains up-to-date with
the latest trends and requirements
in embedded systems and IoT
applications.

Development tools and
support
In terms of development tools and
support, Zephyr OS is compatible
with popular development tools
and integrated development
environments (IDEs), such as
Eclipse, Visual Studio Code, and
West (Zephyr’s command-line tool).
This compatibility facilitates the
development process, allowing
builders to efficiently create, test,
and deploy their applications

Selecting a development
board
While Zephyr supports 500+
development boards, consider
starting with a popular choice
like Arduino, Nordic, or STM32
series for their excellent
community support and extensive
documentation.

Setting up the development
environment

The first step to working with
Zephyr is to install a Zephyr
command line environment on
the computer you intend to use
for development. The instructions
below are for a Ubuntu-based
platform, for Microsoft Windows
and macOS see here.

From your computer’s root
directory enter,

sudo apt update

sudo apt upgrade

Next you will need to check and
install some host dependencies
using the distribution’s package
manager.

You can verify which versions of

Zephyr OS has a vibrant community which extends beyond developers
and commercial entities to include academic institutions and research
bodies contributing to its continuous development and improvement.

https://docs.zephyrproject.org/latest/boards/index.html
https://docs.zephyrproject.org/latest/boards/index.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html

64

CMake, Python, and Devicetree
complier are currently installed
using the following commands.

cmake --version

python3 --version

dtc --version

The minimum required values
are Cmake 3.20.5, Python 3.8,
Devicetree compiler 1.4.6.

To install the required
dependencies, enter,

sudo apt install --no-install-
recommends git cmake ninja-build
gperf \

 ccache dfu-util device-tree-compiler
wget \

 python3-dev python3-pip python3-
setuptools python3-tk python3-wheel
xz-utils file \

 make gcc gcc-multilib g++-multilib
libsdl2-dev libmagic1

Once installed, confirm that the
required versions are now installed
with the above command.

You are now ready to install Zephyr
and its Python dependencies.
You can opt to install these into
a virtual (separate) environment
accessible just to Zephyr or to a
globally, so all Python applications
access them. Since Python
package incompatibilities may
be experienced when shared
in a global environment, it is
recommended to install within a
virtual environment.

Use these instructions to
install Zephyr and its Python
dependencies.

Installing the Zephyr
software development kit

Zephyr’s SDK is compatible with
Linux, macOS, and Windows
and comes in a compressed
file. It provides toolchains for
each of Zephyr’s supported
architectures, which include a
compiler, assembler, linker, and
other programs required to build
Zephyr applications. Install it by
extracting the file and executing the
setup script. Further OS-specific
guidelines are provided below.

By default, the build system
uses the Zephyr SDK toolchain
if no other is specified. Set the
environment variable `ZEPHYR_
TOOLCHAIN_VARIANT` to `zephyr`
to ensure this.

For installations in non-standard
locations, the Zephyr SDK must be
registered in the CMake package
registry via the setup script for
automatic detection. Alternatively,
specify the installation path by
setting `ZEPHYR_SDK_INSTALL_
DIR .̀

1. Visit the Zephyr project website
to download the SDK installer for
your operating system (Linux,
macOS, or Windows). Download
and verify the latest Zephyr SDK
bundle here.

Here are the steps for
downloading Zephyr SDK on
Ubuntu:

cd ~

wget https://github.com/

Figure 2: The Nordic nRF9160 cellular
IoT development board Image source:
Nordic Semiconductor

Getting started with Zephyr: a developer’s guide to your first project

zephyrproject-rtos/sdk-
ng/releases/download/
v0.16.5/zephyr-sdk-0.16.5_
linux-x86_64.tar.xz

wget -O - https://github.com/
zephyrproject-rtos/sdk-ng/
releases/download/v0.16.5/
sha256.sum | shasum --check
--ignore-missing

https://github.com/zephyrproject-rtos/sdk-ng/releases

65
we get technical

2. Extract the Zephyr SDK bundle
archive:

tar xvf zephyr-sdk-0.16.5_
linux-x86_64.tar.xz

The official documentation
recommends that you extract
the SDK bundle at one of the
following default locations:

 ■ $HOME
 ■ $HOME/.local
 ■ $HOME/.local/opt
 ■ $HOME/bin
 ■ /opt
 ■ /usr/local

The SDK bundle should
contain the zephyr-sdk-0.15.1
directory and, when extracted
under $HOME, the resulting
installation path will be $HOME/
zephyr-sdk-<version>.

3. Next, you’ll need to run the
Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5

./setup.sh

The Zephyr SDK includes a
useful command line tool,
west. West’s features provide a
multiple repository management
system similar to Git submodes.
Zephyr uses west for building
applications, flashing, and
debugging them.

Setting up an IDE
Using an IDE like VSCode or Eclipse
can enhance your development
experience with features like code
development and debugging. The
choice of IDE largely depends on
the microcontroller target you are

using. Some IDEs provide direct
support for the Zephyr RTOS from
within its workflow.

Configuring the environment
Follow the Zephyr documentation
to set up your build system and
environment variables. This will
involve configuring the PATH
to include the Zephyr SDK and
setting up necessary environment
variables.

Zephyr development board
- Nordic Semiconductor
nRF9160-DK

An example development board
supported by Zephyr OS is the

nRF9160-DK cellular IoT single-
board from Nordic Semiconductor.
Based on the Nordic nRF9160
system-in-package, it integrates
an arm Cortex-M33 core and a
dedicated radio cellular transceiver
for LTE-M and NB-IoT in addition to
a GNSS receiver. The nRF9160-DK
also incorporates Nordic nRF52840
multiprotocol wireless SoC for
short range communications using
Bluetooth 5 and NFC together with
integrated antennas. The board
hosts an Arduino Uno 3 shield
header, four user-programmable
LEDs, two buttons, and two
switches.

The nRF9160-DK is fully supported
by Nordic’s nRF Connect SDK.

Figure 3: The Zephyr OS devicetree for
the Nordic Semiconductor nRF9160-DK
Image source: Zephyr

https://www.digikey.com/en/products/detail/nordic-semiconductor-asa/NRF9160-DK/9740721

66

Figure 4: The source code of the Zephyr
Blinky example Image source: Zephyr

Zephyr OS is integrated within the
nRF Connect SDK together with
a selection of code examples,
application protocols, protocol
stacks, libraries, and hardware
drivers.

Your first Zephyr project

An established way of confirming
you can connect to and flash a
development board is by blinking an
on-board LED or displaying ‘Hello,
world’ on the system console. The
Zephyr SDK provides code samples
for these popular tasks in addition
to many others. A comprehensive
list is available here, divided
into functional and sub-system
categories. Clicking on each
example provides more detailed
information, including functional
requirements, command line
instructions, and board constraints.

Before commencing to try a
code sample, it is necessary to
determine the development board’s
identity according to Zephyr’s
supported board list. For our first
project, we’ll use the nRF9160-DK
development board highlighted
above. To blink an LED on the board
we must ascertain how the physical
LED is mapped into Zephyr OS. The
devicetree node label table – see
Figure 3 – provides the definitions
for the board’s LEDs, buttons,
and switches. A readable text file
of a board’s devicetree has a file
extension .dts. The devicetree
source file for the nRF9160
highlights the mapping and routing

Getting started with Zephyr: a developer’s guide to your first project

https://docs.zephyrproject.org/latest/samples/index.html
https://docs.zephyrproject.org/latest/boards/index.html
https://docs.zephyrproject.org/latest/boards/arm/nrf9160dk_nrf52840/doc/index.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/arm/nrf9160dk_nrf52840/nrf9160dk_nrf52840.dts

67
we get technical

of board features.

The Blinky code sample uses
Zephyr’s GPIO API to configure
the required LED using the
devicetree and, when executed, will
continuously toggle the required
LED. You can access the c source
code files on the Zephyr GitHub
repository – see Figure 4.

Use the Zephyr command line tool
west, to build and flash the Blinky
example to your nRF9160-DK
development board.

west build -b nrf9160dk_nrf52840
samples/basic/blinky

west flash

During execution, the LED flashes
and a system console displays the
current LED state, either ON or OFF.

If you encounter a build error that
points to the struct gpio_dt_spec
LED variable, it is likely that you
either have an unsupported board
or an incorrect LED assignment.

Another test is to use the Hello
World example. Since the
nRF9160-DK does not have any
on-board display, you must use a
terminal program to access the
board’s system console output.
For example, using the minicom
terminal program from a Linux
command line shell, the syntax is -

$ minicom -D <tty_device> -b 115200

<tty_device> defines the port that
the nRF52480 is connected to. In
most cases using Linux, it will be /

dev/ttyACM1 or /dev/ttyACM0 for
the nRF9160.

You can then proceed to build
and flash the sample code, using
west from the root directory of the
Zephyr respository.

west build -b nrf9160dk_nrf52840
samples/hello_world

west flash

Next steps in Zephyr
development

Once you have successfully
connected to the board and run
one or both of the above examples,
why not explore more functionality
of your chosen development board
with one of the more advanced
Zephyr code samples?

For example, if you choose an
STMicro STM32F3 Discovery board
as your development platform,
you could access its onboard
LSM303DLHC 6-axis accelerometer
and magnetometer using this code
sample.

Another sensor example is using
the popular Bosch BME280
environmental device that
measures temperature, humidity
and air pressure. Equipped with
both SPI and I2C interfaces, the
BMS280 is available as an add-
on shield or Click board for many
embedded development boards.

Zephyr – the proven, open-
source RTOS for embedded
developers

Zephyr OS offers a stepping-
stone for embedded developers
who wish to advance their
skills from single loop-based
applications to real-time, thread-
based designs. Supporting all
popular microcontroller and
microprocessor architectures, and
over 500+ development boards,
Zephyr is accessible and well-
documented.

Start your journey into RTOS
development today with Zephyr.

https://docs.zephyrproject.org/latest/samples/basic/blinky/README.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/basic/blinky/src/main.c
https://docs.zephyrproject.org/latest/samples/sensor/lsm303dlhc/README.html
https://docs.zephyrproject.org/latest/samples/sensor/bme280/README.html

68

